IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223034746.html
   My bibliography  Save this article

Enhanced formation of methane hydrates via graphene oxide: Machine learning insights from molecular dynamics simulations

Author

Listed:
  • Lin, Yanwen
  • Hao, Yongchao
  • Shi, Qiao
  • Xu, Yihua
  • Song, Zixuan
  • Zhou, Ziyue
  • Fu, Yuequn
  • Zhang, Zhisen
  • Wu, Jianyang

Abstract

Gas hydrates, with their significant applications in energy and environment sectors, have emerged as promising technologies for gas separation, natural gas and energy storage. The formation of methane hydrates occurs in substrate-contact conditions, where the properties of the substrate surfaces play a crucial role in determining hydrate formation pathways. Herein, the influence of the hydroxyl group (-OH) content on the graphene surface on methane hydrate formation in confined systems using molecular dynamics (MD) simulations with machine learning (ML) technique. The MD results show that increasing the oxidation degree effectively enhances the formation of methane hydrate within the oxidation degree of 10 %–40 %. This enhancement is attributed to the hydrophilicity of the (GO) surfaces. When the oxidation degree reaches 50 %, however, the formation rate of methane hydrates slows down compared to the GO-40 system. This deceleration can be attributed to the formation of dense water layers that adhere to the GO surfaces, resulting in impeding the hydrate formation process. Markov State Model (MSM) is employed to analyze the induction time of GO on methane hydrate formation, highlighting the important role of GO in the formation of methane hydrates. Additionally, an eXtreme Gradient Boosting (XGboost) ML model is developed to predict the formation behaviors of methane hydrates. Ternary water-ring aggregations (TWRAs) are adopted as indicators to understand to the formation behaviors, and the XGboost ML model facilitate the identification of key TWRAs associated with the formation process. This work provides molecular-level insights into the influence of –OH group on formation of methane hydrates, and offers a predictive framework for understanding and characterizing the formation clathrate hydrates in confined systems.

Suggested Citation

  • Lin, Yanwen & Hao, Yongchao & Shi, Qiao & Xu, Yihua & Song, Zixuan & Zhou, Ziyue & Fu, Yuequn & Zhang, Zhisen & Wu, Jianyang, 2024. "Enhanced formation of methane hydrates via graphene oxide: Machine learning insights from molecular dynamics simulations," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034746
    DOI: 10.1016/j.energy.2023.130080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223034746
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Zhi & Zhang, Yue & Shen, Yimao & Cheng, Liwei & Liu, Bei & Yan, Kele & Chen, Guangjin & Li, Tianduo, 2022. "Molecular dynamics simulation to explore the synergistic inhibition effect of kinetic and thermodynamic hydrate inhibitors," Energy, Elsevier, vol. 238(PB).
    2. Susanna Röblitz & Marcus Weber, 2013. "Fuzzy spectral clustering by PCCA+: application to Markov state models and data classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(2), pages 147-179, June.
    3. Jianyang Wu & Fulong Ning & Thuat T. Trinh & Signe Kjelstrup & Thijs J. H. Vlugt & Jianying He & Bjørn H. Skallerud & Zhiliang Zhang, 2015. "Mechanical instability of monocrystalline and polycrystalline methane hydrates," Nature Communications, Nature, vol. 6(1), pages 1-10, December.
    4. Zhang, Zhengcai & Kusalik, Peter G. & Wu, Nengyou & Liu, Changling & Zhang, Yongchao, 2022. "Molecular simulation study on the stability of methane hydrate confined in slit-shaped pores," Energy, Elsevier, vol. 257(C).
    5. Lu, Yi-Yu & Ge, Bin-Bin & Zhong, Dong-Liang, 2020. "Investigation of using graphite nanofluids to promote methane hydrate formation: Application to solidified natural gas storage," Energy, Elsevier, vol. 199(C).
    6. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    7. Zhang, Zhengcai & Kusalik, Peter G. & Liu, Changling & Wu, Nengyou, 2023. "Methane hydrate formation in slit-shaped pores: Impacts of surface hydrophilicity," Energy, Elsevier, vol. 285(C).
    8. Chong, Zheng Rong & Yang, She Hern Bryan & Babu, Ponnivalavan & Linga, Praveen & Li, Xiao-Sen, 2016. "Review of natural gas hydrates as an energy resource: Prospects and challenges," Applied Energy, Elsevier, vol. 162(C), pages 1633-1652.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Siyuan & Wang, Yanhong & Lang, Xuemei & Fan, Shuanshi & Li, Gang, 2023. "Rapid and high hydrogen storage in epoxycyclopentane hydrate at moderate pressure," Energy, Elsevier, vol. 268(C).
    2. Xu, Chun-Gang & Cai, Jing & Yu, Yi-Song & Yan, Ke-Feng & Li, Xiao-Sen, 2018. "Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement," Applied Energy, Elsevier, vol. 217(C), pages 527-536.
    3. Cheng, Fanbao & Sun, Xiang & Li, Yanghui & Ju, Xin & Yang, Yaobin & Liu, Xuanji & Liu, Weiguo & Yang, Mingjun & Song, Yongchen, 2023. "Numerical analysis of coupled thermal-hydro-chemo-mechanical (THCM) behavior to joint production of marine gas hydrate and shallow gas," Energy, Elsevier, vol. 281(C).
    4. Chen, Zherui & Dai, Sining & Chen, Cong & Lyu, Huangwu & Zhang, Shuheng & Liu, Xuanji & Li, Yanghui, 2024. "Hydrate aggregation in oil-gas pipelines: Unraveling the dual role of asphalt and water," Energy, Elsevier, vol. 290(C).
    5. Liu, Jinxiang & Hou, Jian & Xu, Jiafang & Liu, Haiying & Chen, Gang & Zhang, Jun, 2017. "Formation of clathrate cages of sI methane hydrate revealed by ab initio study," Energy, Elsevier, vol. 120(C), pages 698-704.
    6. Yang, Mingjun & Dong, Shuang & Zhao, Jie & Zheng, Jia-nan & Liu, Zheyuan & Song, Yongchen, 2021. "Ice behaviors and heat transfer characteristics during the isothermal production process of methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 232(C).
    7. Fang, Bin & Lü, Tao & Li, Wei & Moultos, Othonas A. & Vlugt, Thijs J.H. & Ning, Fulong, 2024. "Microscopic insights into poly- and mono-crystalline methane hydrate dissociation in Na-montmorillonite pores at static and dynamic fluid conditions," Energy, Elsevier, vol. 288(C).
    8. Yi Wang & Lei Zhan & Jing-Chun Feng & Xiao-Sen Li, 2019. "Influence of the Particle Size of Sandy Sediments on Heat and Mass Transfer Characteristics during Methane Hydrate Dissociation by Thermal Stimulation," Energies, MDPI, vol. 12(22), pages 1-15, November.
    9. Cheng, Zucheng & Li, Shaohua & Liu, Yu & Zhang, Yi & Ling, Zheng & Yang, Mingjun & Jiang, Lanlan & Song, Yongchen, 2022. "Post-combustion CO2 capture and separation in flue gas based on hydrate technology:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    10. Sun, You-Hong & Zhang, Guo-Biao & Carroll, John J. & Li, Sheng-Li & Jiang, Shu-Hui & Guo, Wei, 2018. "Experimental investigation into gas recovery from CH4-C2H6-C3H8 hydrates by CO2 replacement," Applied Energy, Elsevier, vol. 229(C), pages 625-636.
    11. Jung-Tae Kim & Ah-Ram Kim & Gye-Chun Cho & Chul-Whan Kang & Joo Yong Lee, 2019. "The Effects of Coupling Stiffness and Slippage of Interface Between the Wellbore and Unconsolidated Sediment on the Stability Analysis of the Wellbore Under Gas Hydrate Production," Energies, MDPI, vol. 12(21), pages 1-23, November.
    12. Sergey Misyura & Pavel Strizhak & Anton Meleshkin & Vladimir Morozov & Olga Gaidukova & Nikita Shlegel & Maria Shkola, 2023. "A Review of Gas Capture and Liquid Separation Technologies by CO 2 Gas Hydrate," Energies, MDPI, vol. 16(8), pages 1-20, April.
    13. Yi Wang & Jing-Chun Feng & Xiao-Sen Li & Yu Zhang & Gang Li, 2016. "Evaluation of Gas Production from Marine Hydrate Deposits at the GMGS2-Site 8, Pearl River Mouth Basin, South China Sea," Energies, MDPI, vol. 9(3), pages 1-22, March.
    14. Mu, Liang & Tan, Qiqi & Li, Xianlong & Zhang, Qingyun & Cui, Qingyan, 2023. "A novel method to store methane by forming hydrate in the high water-oil ratio emulsions," Energy, Elsevier, vol. 264(C).
    15. Zhang, Panpan & Zhang, Yiqun & Zhang, Wenhong & Tian, Shouceng, 2022. "Numerical simulation of gas production from natural gas hydrate deposits with multi-branch wells: Influence of reservoir properties," Energy, Elsevier, vol. 238(PA).
    16. Tinghui Wan & Miao Yu & Hongfeng Lu & Zongheng Chen & Zhanzhao Li & Lieyu Tian & Keliang Li & Ning Huang & Jingli Wang, 2024. "Numerical Simulation of Vertical Well Depressurization with Different Deployments of Radial Laterals in Class 1-Type Hydrate Reservoir," Energies, MDPI, vol. 17(5), pages 1-19, February.
    17. Cao, Xinxin & Sun, Jiaxin & Qin, Fanfan & Ning, Fulong & Mao, Peixiao & Gu, Yuhang & Li, Yanlong & Zhang, Heen & Yu, Yanjiang & Wu, Nengyou, 2023. "Numerical analysis on gas production performance by using a multilateral well system at the first offshore hydrate production test site in the Shenhu area," Energy, Elsevier, vol. 270(C).
    18. Chen, Lin & Feng, Yongchang & Kogawa, Takuma & Okajima, Junnosuke & Komiya, Atsuki & Maruyama, Shigenao, 2018. "Construction and simulation of reservoir scale layered model for production and utilization of methane hydrate: The case of Nankai Trough Japan," Energy, Elsevier, vol. 143(C), pages 128-140.
    19. Wang, Bin & Fan, Zhen & Wang, Pengfei & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2018. "Analysis of depressurization mode on gas recovery from methane hydrate deposits and the concomitant ice generation," Applied Energy, Elsevier, vol. 227(C), pages 624-633.
    20. Qibing Wang & Ren Wang & Jiaxin Sun & Jinsheng Sun & Cheng Lu & Kaihe Lv & Jintang Wang & Jianlong Wang & Jie Yang & Yuanzhi Qu, 2021. "Effect of Drilling Fluid Invasion on Natural Gas Hydrate Near-Well Reservoirs Drilling in a Horizontal Well," Energies, MDPI, vol. 14(21), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.