IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v359y2024ics0306261924000448.html
   My bibliography  Save this article

Investigations into methane hydrate formation, accumulation, and distribution in sediments with different contents of illite clay

Author

Listed:
  • Chen, Chang
  • Zhang, Yu
  • Li, Xiaosen
  • He, Jiayuan
  • Gao, Fei
  • Chen, Zhaoyang

Abstract

Fine-grained sediments are widely distributed in naturally occurring hydrate-bearing sediments (HBS). However, the effects of silty and clayey minerals on the kinetics of methane hydrate (MH) formation and distribution are less well understood than in sandy sediments. In this study, a series of experiments were designed, which involves the kinetics and morphological observations to investigate the MH formation in clayey silty sediments with mass fractions of illite ranging from 0 to 50 wt%. The evolution of MH accumulation and distribution were analyzed based on temperature and electrical resistance measurements. The experimental results showed that the mass fraction of illite has a critical effect on MH nucleation, formation rate and distribution within the sandy sediment. The effect of illite on the gas uptake rate is primarily observed in the early MH formation stages, in which the MH formation rate in the system with 10 wt% illite exhibits approximately 1.66 times higher than that of pure sandy sediment. However, as the illite mass fraction increases from 20 wt% to 40 wt%, the MH formation rate decreases, only to increase significantly when the mass fraction reaches 50 wt%, which may be due to changes in the sediment skeletal structure. In the pure sandy system, MH primarily accumulates in the upper layer of the sediment. As the illite mass fraction increases, MH content in the lower layer of the sediment gradually increases. In morphological observations, several new cracks appeared after MH formation in highly silty and clayey sediments, increasing the MH formation rate. The electrical resistance of sediments exhibits a close relationship with hydrate saturation, and it basically increases proportionately with hydrate saturation until certain inflection points. After these points, the electrical resistance shows a significant increase. Moreover, the hydrate saturation at the inflection points tends to increase with higher illite mass fractions due to a more dispersed water distribution.

Suggested Citation

  • Chen, Chang & Zhang, Yu & Li, Xiaosen & He, Jiayuan & Gao, Fei & Chen, Zhaoyang, 2024. "Investigations into methane hydrate formation, accumulation, and distribution in sediments with different contents of illite clay," Applied Energy, Elsevier, vol. 359(C).
  • Handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924000448
    DOI: 10.1016/j.apenergy.2024.122661
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924000448
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122661?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Choi, Wonjung & Mok, Junghoon & Lee, Jonghyuk & Lee, Yohan & Lee, Jaehyoung & Sum, Amadeu K. & Seo, Yongwon, 2022. "Effective CH4 production and novel CO2 storage through depressurization-assisted replacement in natural gas hydrate-bearing sediment," Applied Energy, Elsevier, vol. 326(C).
    2. Wu, Tianwei & Wan, Kun & Li, Xiao-Sen & Wang, Yi & Chen, Zhao-Yang, 2023. "Heat utilization efficiency analysis of gas production from hydrate reservoir by depressurization in conjunction with heat stimulation," Energy, Elsevier, vol. 263(PA).
    3. Yin, Zhenyuan & Wan, Qing-Cui & Gao, Qiang & Linga, Praveen, 2020. "Effect of pressure drawdown rate on the fluid production behaviour from methane hydrate-bearing sediments," Applied Energy, Elsevier, vol. 271(C).
    4. Nair, Vishnu Chandrasekharan & Prasad, Siddhant Kumar & Kumar, Rajnish & Sangwai, Jitendra S., 2018. "Energy recovery from simulated clayey gas hydrate reservoir using depressurization by constant rate gas release, thermal stimulation and their combinations," Applied Energy, Elsevier, vol. 225(C), pages 755-768.
    5. Bhattacharjee, Gaurav & Choudhary, Nilesh & Barmecha, Vivek & Kushwaha, Omkar S. & Pande, Nawal K. & Chugh, Parivesh & Roy, Sudip & Kumar, Rajnish, 2019. "Methane recovery from marine gas hydrates: A bench scale study in presence of low dosage benign additives," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Wu, Zhaoran & Li, Yanghui & Sun, Xiang & Wu, Peng & Zheng, Jianan, 2018. "Experimental study on the effect of methane hydrate decomposition on gas phase permeability of clayey sediments," Applied Energy, Elsevier, vol. 230(C), pages 1304-1310.
    7. Yu, Yi-Song & Zhang, Qing-Zong & Li, Xiao-Sen & Chen, Chang & Zhou, Shi-Dong, 2020. "Kinetics, compositions and structures of carbon dioxide/hydrogen hydrate formation in the presence of cyclopentane," Applied Energy, Elsevier, vol. 265(C).
    8. Li, Gang & Li, Xiao-Sen & Lv, Qiu-Nan & Xiao, Chang-Wen & Liu, Jian-Wu, 2023. "Full implicit simulator of hydrate (FISH) and analysis on hydrate dissociation in porous media in the cubic hydrate simulator," Energy, Elsevier, vol. 280(C).
    9. Song, Yongchen & Tian, Mengru & Zheng, Jia-nan & Yang, Mingjun, 2022. "Thermodynamics analysis and ice behavior during the depressurization process of methane hydrate reservoir," Energy, Elsevier, vol. 250(C).
    10. Wan, Qing-Cui & Si, Hu & Li, Bo & Yin, Zhen-Yuan & Gao, Qiang & Liu, Shu & Han, Xiao & Chen, Ling-Ling, 2020. "Energy recovery enhancement from gas hydrate based on the optimization of thermal stimulation modes and depressurization," Applied Energy, Elsevier, vol. 278(C).
    11. Walsh, Matthew R. & Hancock, Steve H. & Wilson, Scott J. & Patil, Shirish L. & Moridis, George J. & Boswell, Ray & Collett, Timothy S. & Koh, Carolyn A. & Sloan, E. Dendy, 2009. "Preliminary report on the commercial viability of gas production from natural gas hydrates," Energy Economics, Elsevier, vol. 31(5), pages 815-823, September.
    12. Zhang, Zhengcai & Kusalik, Peter G. & Liu, Changling & Wu, Nengyou, 2023. "Methane hydrate formation in slit-shaped pores: Impacts of surface hydrophilicity," Energy, Elsevier, vol. 285(C).
    13. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren, Junjie & Yin, Zhenyuan & Lu, Hongfeng & Xu, Chenlu & Kuang, Zenggui & Deng, Wei & Liu, Yunting & Linga, Praveen, 2024. "Effects of South China Sea clayey-silty sediments on the kinetics and morphology of CH4 hydrate: Implication on energy recovery," Applied Energy, Elsevier, vol. 367(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Chang & Zhang, Yu & Li, Xiaosen & Gao, Fei & Chen, Yuru & Chen, Zhaoyang, 2024. "Experimental investigation into gas production from methane hydrate in sediments with different contents of illite clay by depressurization," Energy, Elsevier, vol. 296(C).
    2. Yang, Lei & Shi, Kangji & Qu, Aoxing & Liang, Huiyong & Li, Qingping & Lv, Xin & Leng, Shudong & Liu, Yanzhen & Zhang, Lunxiang & Liu, Yu & Xiao, Bo & Yang, Shengxiong & Zhao, Jiafei & Song, Yongchen, 2023. "The locally varying thermodynamic driving force dominates the gas production efficiency from natural gas hydrate-bearing marine sediments," Energy, Elsevier, vol. 276(C).
    3. Wan, Qing-Cui & Yin, Zhenyuan & Gao, Qiang & Si, Hu & Li, Bo & Linga, Praveen, 2022. "Fluid production behavior from water-saturated hydrate-bearing sediments below the quadruple point of CH4 + H2O," Applied Energy, Elsevier, vol. 305(C).
    4. Shi, Kangji & Wang, Zifei & Jia, Yuxin & Li, Qingping & Lv, Xin & Wang, Tian & Zhang, Lunxiang & Liu, Yu & Zhao, Jiafei & Song, Yongchen & Yang, Lei, 2022. "Effects of the vertical heterogeneity on the gas production behavior from hydrate reservoirs simulated by the fine sediments from the South China Sea," Energy, Elsevier, vol. 255(C).
    5. Lin, Decai & Lu, Jingsheng & Liu, Jia & Liang, Deqing & Li, Dongliang & Jin, Guangrong & Xia, Zhiming & Li, Xiaosen, 2023. "Numerical study on natural gas hydrate production by hot water injection combined with depressurization," Energy, Elsevier, vol. 282(C).
    6. Dong, Shuang & Yang, Mingjun & Zhang, Lei & Zheng, Jia-nan & Song, Yongchen, 2023. "Methane hydrate exploitation characteristics and thermodynamic non-equilibrium mechanisms by long depressurization method," Energy, Elsevier, vol. 280(C).
    7. Zhang, Jidong & Yin, Zhenyuan & Li, Qingping & Li, Shuaijun & Wang, Yi & Li, Xiao-Sen, 2023. "Comparison of fluid production between excess-gas and excess-water hydrate-bearing sediments under depressurization and its implication on energy recovery," Energy, Elsevier, vol. 282(C).
    8. Guo, Xianwei & Xu, Lei & Wang, Bin & Sun, Lingjie & Liu, Yulong & Wei, Rupeng & Yang, Lei & Zhao, Jiafei, 2020. "Optimized gas and water production from water-saturated hydrate-bearing sediment through step-wise depressurization combined with thermal stimulation," Applied Energy, Elsevier, vol. 276(C).
    9. Kou, Xuan & Feng, Jing-Chun & Li, Xiao-Sen & Wang, Yi & Chen, Zhao-Yang, 2022. "Visualization of interactions between depressurization-induced hydrate decomposition and heat/mass transfer," Energy, Elsevier, vol. 239(PC).
    10. Song, Rui & Feng, Xiaoyu & Wang, Yao & Sun, Shuyu & Liu, Jianjun, 2021. "Dissociation and transport modeling of methane hydrate in core-scale sandy sediments: A comparative study," Energy, Elsevier, vol. 221(C).
    11. Liu, Zheng & Zheng, Junjie & Wang, Zhiyuan & Gao, Yonghai & Sun, Baojiang & Liao, Youqiang & Linga, Praveen, 2023. "Effect of clay on methane hydrate formation and dissociation in sediment: Implications for energy recovery from clayey-sandy hydrate reservoirs," Applied Energy, Elsevier, vol. 341(C).
    12. Wu, Zhaoran & Liu, Weiguo & Zheng, Jianan & Li, Yanghui, 2020. "Effect of methane hydrate dissociation and reformation on the permeability of clayey sediments," Applied Energy, Elsevier, vol. 261(C).
    13. Li, Nan & Zhang, Jie & Xia, Ming-Ji & Sun, Chang-Yu & Liu, Yan-Sheng & Chen, Guang-Jin, 2021. "Gas production from heterogeneous hydrate-bearing sediments by depressurization in a large-scale simulator," Energy, Elsevier, vol. 234(C).
    14. Wang, Xiaochu & Sun, Youhong & Li, Bing & Zhang, Guobiao & Guo, Wei & Li, Shengli & Jiang, Shuhui & Peng, Saiyu & Chen, Hangkai, 2023. "Reservoir stimulation of marine natural gas hydrate-a review," Energy, Elsevier, vol. 263(PE).
    15. Dong, Shuang & Yang, Mingjun & Chen, Mingkun & Zheng, Jia-nan & Song, Yongchen, 2022. "Thermodynamics analysis and temperature response mechanism during methane hydrate production by depressurization," Energy, Elsevier, vol. 241(C).
    16. Jin, Guangrong & Liu, Jie & Su, Zheng & Feng, Chuangji & Cheng, Sanshan & Zhai, Haizhen & Liu, Lihua, 2024. "Gas production from a promising reservoir of the hydrate with associated and shallow gas layers in the low permeable sediments," Energy, Elsevier, vol. 295(C).
    17. Feng, Qian & Liu, Xian-jie & Peng, Zhi-gang & Zheng, Yong & Huo, Jin-hua & Liu, Huan, 2019. "Preparation of low hydration heat cement slurry with micro-encapsulated thermal control material," Energy, Elsevier, vol. 187(C).
    18. Sergey Misyura & Pavel Strizhak & Anton Meleshkin & Vladimir Morozov & Olga Gaidukova & Nikita Shlegel & Maria Shkola, 2023. "A Review of Gas Capture and Liquid Separation Technologies by CO 2 Gas Hydrate," Energies, MDPI, vol. 16(8), pages 1-20, April.
    19. Chen, Xuejun & Lu, Hailong & Gu, Lijuan & Shang, Shilong & Zhang, Yi & Huang, Xin & Zhang, Le, 2022. "Preliminary evaluation of the economic potential of the technologies for gas hydrate exploitation," Energy, Elsevier, vol. 243(C).
    20. Liao, Youqiang & Zheng, Junjie & Wang, Zhiyuan & Sun, Baojiang & Sun, Xiaohui & Linga, Praveen, 2022. "Modeling and characterizing the thermal and kinetic behavior of methane hydrate dissociation in sandy porous media," Applied Energy, Elsevier, vol. 312(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924000448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.