IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v284y2023ics0360544223021230.html
   My bibliography  Save this article

Mechanisms and field application of in-situ heat injection-enhanced gas drainage

Author

Listed:
  • Hu, Linjie
  • Feng, Zengchao
  • Zhou, Dong
  • Wang, Xing

Abstract

The low permeability of coal seams and strong adsorption of methane considerably inhibit gas drainage; thus, developing a method for efficient gas drainage is crucial. The heat injection-enhanced gas drainage tests were carried out in the laboratory and coal mine, and the gas drainage effect and mechanism of heat injection method were studied. Then, through numerical simulation, the gas production law of heat injection method was analyzed from the perspective of water and gas migration. Indoor experiments demonstrated that heat injection strengthened methane desorption and relieved the inhibitory effect of water on gas. The gas drainage effect of field tests was remarkable, and the gas concentration and daily gas production increased by over 10 and 100 times, respectively. During heat injection, water occupied the migration channel of gas, and the inhibition of water on gas was greater than the promotion of temperature, resulting in the reduction of gas production; After heat injection, high temperature promoted gas desorption and relieved the inhibition of water on gas, resulting in a significant increase in gas production. The gas production law obtained from the numerical simulation showed a high degree of consistency with field tests. The results can provide a reference for gas control.

Suggested Citation

  • Hu, Linjie & Feng, Zengchao & Zhou, Dong & Wang, Xing, 2023. "Mechanisms and field application of in-situ heat injection-enhanced gas drainage," Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223021230
    DOI: 10.1016/j.energy.2023.128729
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223021230
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128729?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Gang & Su, Jun & Zhang, Zunguo & Lan, Anchang & Zhou, Xihua & Gao, Fei & Zhou, Jianbin, 2022. "Effect of CO2 injection on CH4 desorption rate in poor permeability coal seams: An experimental study," Energy, Elsevier, vol. 238(PA).
    2. Lan, Wenjian & Wang, Hanxiang & Liu, Qihu & Zhang, Xin & Chen, Jingkai & Li, Ziling & Feng, Kun & Chen, Shengshan, 2021. "Investigation on the microwave heating technology for coalbed methane recovery," Energy, Elsevier, vol. 237(C).
    3. Yang, Xin & Wang, Gongda & Du, Feng & Jin, Longzhe & Gong, Haoran, 2022. "N2 injection to enhance coal seam gas drainage (N2-ECGD): Insights from underground field trial investigation," Energy, Elsevier, vol. 239(PC).
    4. Jianlin Xie & Yangsheng Zhao, 2020. "A Mathematical Model to Study the Coupling Effect of Deformation-Seepage-Heat Transfer on Coalbed Methane Transport and Its Simulative Application," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-18, August.
    5. Hongmei Cheng & Ning Zhang & Yugui Yang & Weihong Peng & Heng Chen, 2019. "A Study on the Mechanical Mechanism of Injection Heat to Increase Production of Gas in Low-Permeability Coal Seam," Energies, MDPI, vol. 12(12), pages 1-24, June.
    6. Chengwei Liu & Binwei Xia & Yiyu Lu, 2018. "Coalbed Methane Extraction Using the Self-Oscillating Water Jet Slotting Method," Energies, MDPI, vol. 11(4), pages 1-19, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue, Jiwei & Wang, Chen & Shi, Biming & Sun, Yongxin & Han, Qijun & Liang, Yuehui & Xu, Jinlin, 2024. "Gas desorption characteristics in different stages for retained water infiltration gas-bearing coal and its influence mechanism," Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Xiyang & Tan, Bo & Wang, Haiyan & Wang, Feiran & Li, Tianze & Wan, Bo & Xu, Changfu & Qi, Qingjie, 2024. "Experimental study on the displacement effect and inerting differences of inert gas in loose broken coal," Energy, Elsevier, vol. 289(C).
    2. Wenjie Xu & Xigui Zheng & Cancan Liu & Peng Li & Boyang Li & Kundai Michael Shayanowako & Jiyu Wang & Xiaowei Guo & Guowei Lai, 2022. "Numerical Simulation Study of High-Pressure Air Injection to Promote Gas Drainage," Sustainability, MDPI, vol. 14(21), pages 1-15, October.
    3. Zhao, Li & Guanhua, Ni & Yan, Wang & Hehe, Jiang & Yongzan, Wen & Haoran, Dou & Mao, Jing, 2022. "Semi-homogeneous model of coal based on 3D reconstruction of CT images and its seepage-deformation characteristics," Energy, Elsevier, vol. 259(C).
    4. Zhang, Chaolin & Wang, Enyuan & Li, Bobo & Kong, Xiangguo & Xu, Jiang & Peng, Shoujian & Chen, Yuexia, 2023. "Laboratory experiments of CO2-enhanced coalbed methane recovery considering CO2 sequestration in a coal seam," Energy, Elsevier, vol. 262(PA).
    5. Liu, Zhengdong & Lin, Xiaosong & Zhu, Wancheng & Hu, Ze & Hao, Congmeng & Su, Weiwei & Bai, Gang, 2023. "Effects of coal permeability rebound and recovery phenomenon on CO2 storage capacity under different coalbed temperature conditions during CO2-ECBM process," Energy, Elsevier, vol. 284(C).
    6. Li, Rijun & Wen, Hu & Fan, Shixing & Wang, Hu & Cheng, Xiaojiao & Mi, Wansheng & Liu, Bocong & Liu, Mingyang, 2024. "Migration characteristics of constant elements in the process of coal dissolution by liquid CO2," Energy, Elsevier, vol. 295(C).
    7. Zhou, Yan & Guan, Wei & Cong, Peichao & Sun, Qiji, 2022. "Effects of heterogeneous pore closure on the permeability of coal involving adsorption-induced swelling: A micro pore-scale simulation," Energy, Elsevier, vol. 258(C).
    8. Bai, Gang & Zhou, Zhongjie & Wang, Jue & Tian, Xiangliang & Zhou, Xihua & Li, Xianlin & Chen, Ying, 2023. "Experimental study on damage law of liquid CO2 cyclic freeze–thaw coal," Energy, Elsevier, vol. 284(C).
    9. Wen, Hu & Mi, Wansheng & Fan, Shixing & Liu, Mingyang & Cheng, Xiaojiao & Wang, Hu, 2023. "Determining the reasonable volume required to inject liquid CO2 into a single hole and displace CH4 within the coal seam in bedding boreholes: case study of SangShuPing coal mine," Energy, Elsevier, vol. 266(C).
    10. Bai, Yang & Lin, Hai-Fei & Li, Shu-Gang & Long, Hang & Yan, Min & Li, Yong & Qin, Lei & Zhou, Bin, 2022. "Experimental study on kinetic characteristics of gas diffusion in coal under nitrogen injection," Energy, Elsevier, vol. 254(PA).
    11. Xin Li & Jie Zhang & Rongxin Li & Qi Qi & Yundong Zheng & Cuinan Li & Ben Li & Changjun Wu & Tianyu Hong & Yao Wang & Xiaoxiao Du & Zaipeng Zhao & Xu Liu, 2021. "Numerical Simulation Research on Improvement Effect of Ultrasonic Waves on Seepage Characteristics of Coalbed Methane Reservoir," Energies, MDPI, vol. 14(15), pages 1-15, July.
    12. Song, Haoran & Zhong, Zheng & Lin, Baiquan, 2023. "Impact of methane gas diffusion in coal on elastic modulus and porosity: Modeling and analysis," Energy, Elsevier, vol. 271(C).
    13. Huang, Qiming & li, Mingyang & Yan, Yuting & Ni, Guanhua & Guo, Zhiguo, 2023. "Influence mechanism of inorganic salts on coal permeability during foam fracturing," Energy, Elsevier, vol. 276(C).
    14. Fan, Shen & Wang, Hanxiang & Zhang, Xin & Liu, Yanxin & Lan, Wenjian & Ma, Wenlong & Sun, Bingyu & Yang, Ning & Ge, Jiawang, 2024. "Study on microwave heating energy supplement technology for gas hydrate reservoir," Energy, Elsevier, vol. 286(C).
    15. Guo, Haijun & Yu, Yingjie & Wang, Yunhe & Wang, Kai & Yuan, Liang & Xu, Chao & Ren, Bo, 2024. "Experimental study on the desorption law and diffusion kinetic characteristics of gas in raw coal and tectonic coal," Energy, Elsevier, vol. 289(C).
    16. Hao Wang & Jianzheng Su & Jingyi Zhu & Zhaozhong Yang & Xianglong Meng & Xiaogang Li & Jie Zhou & Liangping Yi, 2022. "Numerical Simulation of Oil Shale Retorting Optimization under In Situ Microwave Heating Considering Electromagnetics, Heat Transfer, and Chemical Reactions Coupling," Energies, MDPI, vol. 15(16), pages 1-14, August.
    17. Bai, Gang & Su, Jun & Fu, Shigen & Li, Xueming & Zhou, Xihua & Wang, Jue & Liu, Zhengdong & Zhang, Xun, 2024. "Effect of CO2 injection on the gas desorption and diffusion kinetics: An experimental study," Energy, Elsevier, vol. 288(C).
    18. Pang, Mingkun & Zhang, Tianjun & Ji, Xiang & Wu, Jinyu & Song, Shuang, 2022. "Measurement of the coefficient of seepage characteristics in pore-crushed coal bodies around gas extraction boreholes," Energy, Elsevier, vol. 254(PA).
    19. Chengwang Wang & Haifeng Zhao & Zhan Liu & Tengfei Wang & Gaojie Chen, 2024. "A Fully Coupled Gas–Water–Solids Mathematical Model for Vertical Well Drainage of Coalbed Methane," Energies, MDPI, vol. 17(6), pages 1-22, March.
    20. Yang, Zairong & Wang, Chaolin & Zhao, Yu & Bi, Jing, 2024. "Microwave fracturing of frozen coal with different water content: Pore-structure evolution and temperature characteristics," Energy, Elsevier, vol. 294(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223021230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.