IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p978-d323667.html
   My bibliography  Save this article

Effects of Organ-Pipe Chamber Geometry on the Frequency and Erosion Characteristics of the Self-Excited Cavitating Waterjet

Author

Listed:
  • Tengfei Cai

    (School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
    Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA)

  • Yan Pan

    (School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Fei Ma

    (School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Pingping Xu

    (School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China)

Abstract

Erosion experiments were performed to uncover the impact of organ-pipe chamber geometry on the frequency and erosion characteristics of self-excited cavitating waterjets. Jets emanating from self-excited nozzles with various organ-pipe geometries were investigated. The upstream and downstream contraction ratios of the organ-pipe resonator were changed respectively from 1.5 to 6 and 2 to 12. Pressure sensors and hydrophone were used to characterize jets’ frequency characteristics. Mass loss was also obtained in each of the configurations to assess the erosion performance. By tuning the self-excited frequency, the peak resonance was achieved using the nozzles with different geometries. Accordingly, the acoustic natural frequencies of various chamber geometries were obtained precisely. Results show that with increasing upstream and downstream contraction ratio of the organ-pipe chamber, the acoustic natural frequency increases monotonically due to the reduction of equivalent length, while the resonance amplitude and mass loss first increase and then decrease. There are optimum geometric parameters to reach the largest resonance amplitude and erosion mass loss: the upstream contraction ratio being between two and four, and downstream ratio being between four and seven. The effective length of the organ pipe can be calculated by the sum of the physical length and equivalent length to accurately obtain the acoustic natural frequency. Under the optimized parameters, the equivalent length can be estimated as 0.35 D .

Suggested Citation

  • Tengfei Cai & Yan Pan & Fei Ma & Pingping Xu, 2020. "Effects of Organ-Pipe Chamber Geometry on the Frequency and Erosion Characteristics of the Self-Excited Cavitating Waterjet," Energies, MDPI, vol. 13(4), pages 1-13, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:978-:d:323667
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/978/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/978/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhenlong Fang & Qiang Wu & Mengda Zhang & Haoyang Liu & Pan Jiang & Deng Li, 2019. "Large Eddy Simulation of Self-Excited Oscillation Pulsed Jet (SEOPJ) Induced by a Helmholtz Oscillator in Underground Mining," Energies, MDPI, vol. 12(11), pages 1-20, June.
    2. Xiaoliang Wang & Yong Kang & Mengda Zhang & Miao Yuan & Deng Li, 2018. "The Effects of the Downstream Contraction Ratio of Organ-Pipe Nozzle on the Pressure Oscillations of Self-Resonating Waterjets," Energies, MDPI, vol. 11(11), pages 1-12, November.
    3. Chengwei Liu & Binwei Xia & Yiyu Lu, 2018. "Coalbed Methane Extraction Using the Self-Oscillating Water Jet Slotting Method," Energies, MDPI, vol. 11(4), pages 1-19, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengda Zhang & Zhenlong Fang & Yi’nan Qian, 2021. "Experimental Study on the Impingement Characteristics of Self-Excited Oscillation Supercritical CO 2 Jets Produced by Organ-Pipe Nozzles," Energies, MDPI, vol. 14(22), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengda Zhang & Zhenlong Fang & Yi’nan Qian, 2021. "Experimental Study on the Impingement Characteristics of Self-Excited Oscillation Supercritical CO 2 Jets Produced by Organ-Pipe Nozzles," Energies, MDPI, vol. 14(22), pages 1-15, November.
    2. Hu, Linjie & Feng, Zengchao & Zhou, Dong & Wang, Xing, 2023. "Mechanisms and field application of in-situ heat injection-enhanced gas drainage," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:978-:d:323667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.