IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223034965.html
   My bibliography  Save this article

Experimental study on the displacement effect and inerting differences of inert gas in loose broken coal

Author

Listed:
  • Fang, Xiyang
  • Tan, Bo
  • Wang, Haiyan
  • Wang, Feiran
  • Li, Tianze
  • Wan, Bo
  • Xu, Changfu
  • Qi, Qingjie

Abstract

The pre-injection of inert gas before coal self-ignition is a common key measure for preventing and controlling spontaneous coal combustion in a goaf. Previous studies have mainly considered inerting to reduce the concentration of ambient gas components and explored the influence of oxygen or inert gas concentration on the inerting effect of loosely broken coal, but seldom considered the replacement of oxygen by an inert gas, especially the replacement of adsorbed oxygen. Here, we quantitatively investigated the difference in room-temperature inerting of loosely broken coal by N2 and CO2 by conducting one-factor experiments on replacing oxygen in coal with an inert gas at room temperature and pressure. The results reveal that the replacement process can be divided into three stages and that the different adsorption capacities of coal for N2 and CO2 are the main reasons for the asynchrony of each replacement stage. The stronger the adsorption capacity, the stronger the displacement of adsorbed oxygen in the adsorbed state by the inert gas. CO2 exhibits an inerting strength 2.3–2.6 times higher than N2 and 5.7–8.8 times higher than He. The experiments also revealed that optimizing the key parameters of inert fire protection technology should consider the adsorption effect.

Suggested Citation

  • Fang, Xiyang & Tan, Bo & Wang, Haiyan & Wang, Feiran & Li, Tianze & Wan, Bo & Xu, Changfu & Qi, Qingjie, 2024. "Experimental study on the displacement effect and inerting differences of inert gas in loose broken coal," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034965
    DOI: 10.1016/j.energy.2023.130102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223034965
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Dong & Qin, Botao & Zhong, Xiaoxing & Sheng, Peng & Yin, Chungen, 2023. "Effect of flammable gases produced from spontaneous smoldering combustion of coal on methane explosion in coal mines," Energy, Elsevier, vol. 279(C).
    2. Yang, Xin & Wang, Gongda & Du, Feng & Jin, Longzhe & Gong, Haoran, 2022. "N2 injection to enhance coal seam gas drainage (N2-ECGD): Insights from underground field trial investigation," Energy, Elsevier, vol. 239(PC).
    3. Zhao, Jingyu & Zhang, Yongli & Song, Jiajia & Guo, Tao & Deng, Jun & Shu, Chi-Min, 2023. "Oxygen distribution and gaseous products change of coal fire based upon the semi-enclosed experimental system," Energy, Elsevier, vol. 263(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qu, Baolin & Wang, Jingxin & Zhu, Hongqing & Hu, Lintao & Liao, Qi, 2024. "Experimental study on evolution and mechanism for dielectric response of different rank coals in terahertz band," Energy, Elsevier, vol. 288(C).
    2. Wenjie Xu & Xigui Zheng & Cancan Liu & Peng Li & Boyang Li & Kundai Michael Shayanowako & Jiyu Wang & Xiaowei Guo & Guowei Lai, 2022. "Numerical Simulation Study of High-Pressure Air Injection to Promote Gas Drainage," Sustainability, MDPI, vol. 14(21), pages 1-15, October.
    3. Tian, Siyu & Qin, Botao & Ma, Dong & Zhou, Qigeng & Luo, Zhongzheng, 2023. "Suppressive effects of alkali metal salt modified dry water material on methane-air explosion," Energy, Elsevier, vol. 285(C).
    4. Xiaojun Feng & Zichuang Ai & Xuebo Zhang & Qilei Wei & Chenjun Du & Qiming Zhang & Chuan Deng, 2023. "Numerical Investigation of the Evolution of Gas and Coal Spontaneously Burned Composite Disaster in the Goaf of Steeply Inclined Coal Seam," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    5. Cai, Jiawen & Yu, Zhaoyang & Yang, Shengqiang & Tang, Jingxia & Ma, Zhenqian & Xie, Xionggang & Hu, Xincheng, 2023. "Fractal characteristics of coal surface structure during low-temperature oxidation and its effect on oxidizability," Energy, Elsevier, vol. 284(C).
    6. Bai, Yang & Lin, Hai-Fei & Li, Shu-Gang & Long, Hang & Yan, Min & Li, Yong & Qin, Lei & Zhou, Bin, 2022. "Experimental study on kinetic characteristics of gas diffusion in coal under nitrogen injection," Energy, Elsevier, vol. 254(PA).
    7. Hu, Linjie & Feng, Zengchao & Zhou, Dong & Wang, Xing, 2023. "Mechanisms and field application of in-situ heat injection-enhanced gas drainage," Energy, Elsevier, vol. 284(C).
    8. Song, Haoran & Zhong, Zheng & Lin, Baiquan, 2023. "Impact of methane gas diffusion in coal on elastic modulus and porosity: Modeling and analysis," Energy, Elsevier, vol. 271(C).
    9. Huang, Qiming & li, Mingyang & Yan, Yuting & Ni, Guanhua & Guo, Zhiguo, 2023. "Influence mechanism of inorganic salts on coal permeability during foam fracturing," Energy, Elsevier, vol. 276(C).
    10. Wang, Kai & Gong, Haoran & Wang, Gongda & Yang, Xin & Xue, Haiteng & Du, Feng & Wang, Zhie, 2024. "N2 injection to enhance gas drainage in low-permeability coal seam: A field test and the application of deep learning algorithms," Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.