IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/1247240.html
   My bibliography  Save this article

A Mathematical Model to Study the Coupling Effect of Deformation-Seepage-Heat Transfer on Coalbed Methane Transport and Its Simulative Application

Author

Listed:
  • Jianlin Xie
  • Yangsheng Zhao

Abstract

Injection of high-temperature water or steam into low-permeability coalbed for efficient and rapid extraction of coalbed methane has been studied by our university for many years and will soon be implemented in the field. With comprehensive consideration of coupling of heat transfer, water seepage, desorption of coalbed methane, and coal-rock mass deformation, the paper establishes a more comprehensive mathematical model of the coupling effect of deformation-seepage-heat transfer on coalbed methane transport. Compared with the previous studies, this theoretical model considers the change of adsorbed and free coalbed methane at high temperature and the coalbed methane transport caused by a high-temperature gradient. Using the Tunlan Coal Mine of Shanxi Coking Coal Group to conduct the numerical simulations on the coalbed methane extraction project using heat injection technology, results show that (1) high-temperature water flowed towards the extraction hole along fractured fissures, with seepage towards the coal mass on both sides of the fissure at the same time, gradually heating the coalbed and forming an arcuate distribution of temperature from high to low for an area from the fractured fissure to the coalbed upper and lower boundaries. On the thirtieth day of heat injection, the temperature of the coalbed in the heat injection area ranged from 140°C to 260°C. (2) Under high temperatures, desorption of the coalbed gas was quick, and the adsorption gas content formed an oval funnel from the heat injection hole towards the extraction hole, centered by the fractured fissure, and migrating towards the coalbed upper and lower boundaries. Along with heat injection and extraction, the absorbed gas content rapidly decreased, and on the thirtieth day of injection, the absorbed gas content of the entire heat injection area decreased to 1.5 m 3 / t , only 7% of the original. (3) During heat injection, the coalbed gas pore pressure rapidly increased and reached 5.5 MPa on the tenth day, about 4.5 times the original, and the pore pressure steadied at 3.5 MPa on the thirtieth day of extraction. Such a high gas pressure gradient promoted the rapid flow and drainage of the gas.

Suggested Citation

  • Jianlin Xie & Yangsheng Zhao, 2020. "A Mathematical Model to Study the Coupling Effect of Deformation-Seepage-Heat Transfer on Coalbed Methane Transport and Its Simulative Application," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-18, August.
  • Handle: RePEc:hin:jnlmpe:1247240
    DOI: 10.1155/2020/1247240
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/1247240.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/1247240.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/1247240?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Linjie & Feng, Zengchao & Zhou, Dong & Wang, Xing, 2023. "Mechanisms and field application of in-situ heat injection-enhanced gas drainage," Energy, Elsevier, vol. 284(C).
    2. Chengwang Wang & Haifeng Zhao & Zhan Liu & Tengfei Wang & Gaojie Chen, 2024. "A Fully Coupled Gas–Water–Solids Mathematical Model for Vertical Well Drainage of Coalbed Methane," Energies, MDPI, vol. 17(6), pages 1-22, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:1247240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.