IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v284y2023ics0360544223025902.html
   My bibliography  Save this article

Effects of coal permeability rebound and recovery phenomenon on CO2 storage capacity under different coalbed temperature conditions during CO2-ECBM process

Author

Listed:
  • Liu, Zhengdong
  • Lin, Xiaosong
  • Zhu, Wancheng
  • Hu, Ze
  • Hao, Congmeng
  • Su, Weiwei
  • Bai, Gang

Abstract

During the permeability evolution process, coal permeability rebound and recovery is an important behaviour. Currently, studies on it mainly focus on the effects of reservoir pressure changes, but the influence of temperature is also significant. In the study, a binary gas permeability evolution model was constructed, which considers the competition mechanism between effective stress, gas adsorption/desorption, and thermal expansion. The model was employed to study the dynamic evolution of various parameters during CO2 injection into CH4-containing coal at different temperatures. The findings demonstrate a complex permeability evolution over time, characterized by a rapid decrease followed by a significant increase and then another gradual decrease. And the time required for permeability rebound and recovery increases as the temperature increases. Moreover, by monitoring the law of gas migration at fixed points and other methods to obtain the changing trend of CO2 flow rate and CO2 cumulative storage volume on a time scale. The results showed that both CO2 flow rate and CO2 cumulative storage volume decreased with increased permeability rebound and recovery time. Inspired by the abovementioned laws, this study proposed using the stage-pressure injection method in high-temperature coal. Results indicate that the stage-pressure method can increase the CO2 injection effect.

Suggested Citation

  • Liu, Zhengdong & Lin, Xiaosong & Zhu, Wancheng & Hu, Ze & Hao, Congmeng & Su, Weiwei & Bai, Gang, 2023. "Effects of coal permeability rebound and recovery phenomenon on CO2 storage capacity under different coalbed temperature conditions during CO2-ECBM process," Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223025902
    DOI: 10.1016/j.energy.2023.129196
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223025902
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129196?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Gang & Su, Jun & Zhang, Zunguo & Lan, Anchang & Zhou, Xihua & Gao, Fei & Zhou, Jianbin, 2022. "Effect of CO2 injection on CH4 desorption rate in poor permeability coal seams: An experimental study," Energy, Elsevier, vol. 238(PA).
    2. Shimin Liu & Yi Wang & Satya Harpalani, 2016. "Anisotropy characteristics of coal shrinkage/swelling and its impact on coal permeability evolution with CO 2 injection," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(5), pages 615-632, October.
    3. Fan, Chaojun & Elsworth, Derek & Li, Sheng & Zhou, Lijun & Yang, Zhenhua & Song, Yu, 2019. "Thermo-hydro-mechanical-chemical couplings controlling CH4 production and CO2 sequestration in enhanced coalbed methane recovery," Energy, Elsevier, vol. 173(C), pages 1054-1077.
    4. Liu, Xudong & Sang, Shuxun & Zhou, Xiaozhi & Wang, Ziliang, 2023. "Coupled adsorption-hydro-thermo-mechanical-chemical modeling for CO2 sequestration and well production during CO2-ECBM," Energy, Elsevier, vol. 262(PA).
    5. Gunter, W. D. & Wong, S. & Cheel, D. B. & Sjostrom, G., 1998. "Large CO2 Sinks: Their role in the mitigation of greenhouse gases from an international, national (Canadian) and provincial (Alberta) perspective," Applied Energy, Elsevier, vol. 61(4), pages 209-227, December.
    6. Myles R. Allen & David J. Frame & Chris Huntingford & Chris D. Jones & Jason A. Lowe & Malte Meinshausen & Nicolai Meinshausen, 2009. "Warming caused by cumulative carbon emissions towards the trillionth tonne," Nature, Nature, vol. 458(7242), pages 1163-1166, April.
    7. Zhang, Chaolin & Wang, Enyuan & Li, Bobo & Kong, Xiangguo & Xu, Jiang & Peng, Shoujian & Chen, Yuexia, 2023. "Laboratory experiments of CO2-enhanced coalbed methane recovery considering CO2 sequestration in a coal seam," Energy, Elsevier, vol. 262(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chaolin & Wang, Enyuan & Li, Bobo & Kong, Xiangguo & Xu, Jiang & Peng, Shoujian & Chen, Yuexia, 2023. "Laboratory experiments of CO2-enhanced coalbed methane recovery considering CO2 sequestration in a coal seam," Energy, Elsevier, vol. 262(PA).
    2. Lin, Jia & Ren, Ting & Cheng, Yuanping & Nemcik, Jan & Wang, Gongda, 2019. "Cyclic N2 injection for enhanced coal seam gas recovery: A laboratory study," Energy, Elsevier, vol. 188(C).
    3. Bai, Gang & Su, Jun & Fu, Shigen & Li, Xueming & Zhou, Xihua & Wang, Jue & Liu, Zhengdong & Zhang, Xun, 2024. "Effect of CO2 injection on the gas desorption and diffusion kinetics: An experimental study," Energy, Elsevier, vol. 288(C).
    4. Zhou, Lijun & Zhou, Xihua & Fan, Chaojun & Bai, Gang, 2022. "Coal permeability evolution triggered by variable injection parameters during gas mixture enhanced methane recovery," Energy, Elsevier, vol. 252(C).
    5. Geng, Weile & Huang, Gun & Guo, Shengli & Jiang, Changbao & Dong, Ziwen & Wang, Wensong, 2022. "Influence of long-term CH4 and CO2 treatment on the pore structure and mechanical strength characteristics of Baijiao coal," Energy, Elsevier, vol. 242(C).
    6. Wang, Zhenzhi & Fu, Xuehai & Pan, Jienan & Deng, Ze, 2023. "Effect of N2/CO2 injection and alternate injection on volume swelling/shrinkage strain of coal," Energy, Elsevier, vol. 275(C).
    7. Ningning Zhao & Tianfu Xu & Kairan Wang & Hailong Tian & Fugang Wang, 2018. "Experimental study of physical‐chemical properties modification of coal after CO2 sequestration in deep unmineable coal seams," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(3), pages 510-528, June.
    8. Dietz, Simon & Gollier, Christian & Kessler, Louise, 2018. "The climate beta," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 258-274.
    9. You, Junyu & Ampomah, William & Sun, Qian, 2020. "Co-optimizing water-alternating-carbon dioxide injection projects using a machine learning assisted computational framework," Applied Energy, Elsevier, vol. 279(C).
    10. Hoel, Michael, 2016. "Optimal control theory with applications to resource and environmental economics," Memorandum 08/2016, Oslo University, Department of Economics.
    11. Gustav Engström & Johan Gars, 2016. "Climatic Tipping Points and Optimal Fossil-Fuel Use," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(3), pages 541-571, November.
    12. Linnenluecke, Martina K. & Smith, Tom & McKnight, Brent, 2016. "Environmental finance: A research agenda for interdisciplinary finance research," Economic Modelling, Elsevier, vol. 59(C), pages 124-130.
    13. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    14. Adam Michael Bauer & Cristian Proistosescu & Gernot Wagner, 2023. "Carbon Dioxide as a Risky Asset," CESifo Working Paper Series 10278, CESifo.
    15. Sen, Suphi & von Schickfus, Marie-Theres, 2020. "Climate policy, stranded assets, and investors’ expectations," Journal of Environmental Economics and Management, Elsevier, vol. 100(C).
    16. Frederick Ploeg, 2021. "Carbon pricing under uncertainty," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 28(5), pages 1122-1142, October.
    17. Geng, Jiabo & Zeng, Gaoxiong & Liu, Cunyang & Li, Xiaoshuang & Zhang, Dongming, 2023. "Development and application of triaxial seepage test system for gas-water two-phase in coal rock," Energy, Elsevier, vol. 277(C).
    18. Seiichi KATAYAMA & Ngo Van LONG & Hiroshi OHTA, 2013. "Carbon Taxes in a Trading World," GSICS Working Paper Series 26, Graduate School of International Cooperation Studies, Kobe University.
    19. Malik Curuk & Suphi Sen, 2023. "Climate Policy and Resource Extraction with Variable Markups and Imperfect Substitutes," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(4), pages 1091-1120.
    20. Rémy Dullieux & Lionel Ragot & Katheline Schubert, 2011. "Carbon Tax and OPEC’s Rents Under a Ceiling Constraint," Scandinavian Journal of Economics, Wiley Blackwell, vol. 113(4), pages 798-824, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223025902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.