IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v284y2023ics0360544223019680.html
   My bibliography  Save this article

Investigating the performance of a water-based PVT system using encapsulated PCM balls: An experimental study

Author

Listed:
  • Hamada, Alaa
  • Emam, Mohamed
  • Refaey, H.A.
  • Moawed, M.
  • Abdelrahman, M.A.

Abstract

The concept of integrating cooling systems with photovoltaic-thermal (PVT) collectors is not new, although it has yet to be widely commercialized. Such systems have the potential to reduce building energy consumption since they can provide combined power and heat generation. Thus, the current work proposes an innovative water-based PVT system coupled with phase change material (PCM) capsules (PVT-PCM panel) and operating in both active and passive cooling modes to maximize the performance of photovoltaic panels in terms of power generation and thermal utilization. Unlike prior PVT systems, the current one achieves a higher electricity generation and heat storage capacity with a lower frictional power to meet the requirements for practical applications. Several sets of experiments were conducted in Cairo, Egypt, under real outdoor climatic conditions, to assess the overall performance of the PVT-PCM panel under various operating scenarios, with the results compared to those of a naturally air-cooled reference PV panel. According to the results, at 3 L/min cooling water flow rate, the actively cooled PVT-PCM panel achieved the highest electrical and thermal energy gain, translating to a maximum cumulative overall efficiency of 74.1%, compared to 34.6% and 12% for the passively cooled PVT-PCM panel and the reference PV panel, respectively.

Suggested Citation

  • Hamada, Alaa & Emam, Mohamed & Refaey, H.A. & Moawed, M. & Abdelrahman, M.A., 2023. "Investigating the performance of a water-based PVT system using encapsulated PCM balls: An experimental study," Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223019680
    DOI: 10.1016/j.energy.2023.128574
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223019680
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128574?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yildirim, Mehmet Ali & Cebula, Artur & Sułowicz, Maciej, 2022. "A cooling design for photovoltaic panels – Water-based PV/T system," Energy, Elsevier, vol. 256(C).
    2. Zhang, Chenyu & Wang, Ning & Xu, Hongtao & Fang, Yuan & Yang, Qiguo & Talkhoncheh, Fariborz Karimi, 2023. "Thermal management optimization of the photovoltaic cell by the phase change material combined with metal fins," Energy, Elsevier, vol. 263(PA).
    3. Montero, Francisco J. & Kumar, Ramesh & Lamba, Ravita & Escobar, Rodrigo A. & Vashishtha, Manish & Upadhyaya, Sushant & Guzmán, Amador M., 2022. "Hybrid photovoltaic-thermoelectric system: Economic feasibility analysis in the Atacama Desert, Chile," Energy, Elsevier, vol. 239(PB).
    4. Açıkkalp, Emin & Caliskan, Hakan & Hong, Hiki & Piao, Hongjie & Seung, Dohyun, 2022. "Extended exergy analysis of a photovoltaic-thermal (PVT) module based desiccant air cooling system for buildings," Applied Energy, Elsevier, vol. 323(C).
    5. Joshi, Sandeep S. & Dhoble, Ashwinkumar S., 2018. "Photovoltaic -Thermal systems (PVT): Technology review and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 848-882.
    6. Obalanlege, Mustapha A. & Xu, Jingyuan & Markides, Christos N. & Mahmoudi, Yasser, 2022. "Techno-economic analysis of a hybrid photovoltaic-thermal solar-assisted heat pump system for domestic hot water and power generation," Renewable Energy, Elsevier, vol. 196(C), pages 720-736.
    7. Ghazy, Mohamed & Ibrahim, E.M.M. & Mohamed, A.S.A. & Askalany, Ahmed A., 2022. "Experimental investigation of hybrid photovoltaic solar thermal collector (PV/T)-adsorption desalination system in hot weather conditions," Energy, Elsevier, vol. 254(PB).
    8. Gan, Guohui & Xiang, Yetao, 2020. "Experimental investigation of a photovoltaic thermal collector with energy storage for power generation, building heating and natural ventilation," Renewable Energy, Elsevier, vol. 150(C), pages 12-22.
    9. Radwan, Ali & Ookawara, Shinichi & Ahmed, Mahmoud, 2019. "Thermal management of concentrator photovoltaic systems using two-phase flow boiling in double-layer microchannel heat sinks," Applied Energy, Elsevier, vol. 241(C), pages 404-419.
    10. Radwan, Ali & Ahmed, Mahmoud, 2017. "The influence of microchannel heat sink configurations on the performance of low concentrator photovoltaic systems," Applied Energy, Elsevier, vol. 206(C), pages 594-611.
    11. Hossain, M.S. & Pandey, A.K. & Selvaraj, Jeyraj & Rahim, Nasrudin Abd & Islam, M.M. & Tyagi, V.V., 2019. "Two side serpentine flow based photovoltaic-thermal-phase change materials (PVT-PCM) system: Energy, exergy and economic analysis," Renewable Energy, Elsevier, vol. 136(C), pages 1320-1336.
    12. Yang, Xiaojiao & Sun, Liangliang & Yuan, Yanping & Zhao, Xudong & Cao, Xiaoling, 2018. "Experimental investigation on performance comparison of PV/T-PCM system and PV/T system," Renewable Energy, Elsevier, vol. 119(C), pages 152-159.
    13. Hosseinzadeh, Mohammad & Sardarabadi, Mohammad & Passandideh-Fard, Mohammad, 2018. "Energy and exergy analysis of nanofluid based photovoltaic thermal system integrated with phase change material," Energy, Elsevier, vol. 147(C), pages 636-647.
    14. Shoeibi, Shahin & Kargarsharifabad, Hadi & Mirjalily, Seyed Ali Agha & Zargarazad, Mojtaba, 2021. "Performance analysis of finned photovoltaic/thermal solar air dryer with using a compound parabolic concentrator," Applied Energy, Elsevier, vol. 304(C).
    15. Li, Jianhui & Zhang, Wei & Xie, Lingzhi & Li, Zihao & Wu, Xin & Zhao, Oufan & Zhong, Jianmei & Zeng, Xiding, 2022. "A hybrid photovoltaic and water/air based thermal(PVT) solar energy collector with integrated PCM for building application," Renewable Energy, Elsevier, vol. 199(C), pages 662-671.
    16. Khanmohammdi, Shoaib & Musharavati, Farayi & Sheykhmohammadi, Mehran, 2022. "Energy and exergy examinations of a PVT based hybrid system for power, heating and potable water production: Transient modeling," Renewable Energy, Elsevier, vol. 195(C), pages 540-553.
    17. Li, Guanru & Hua, Qingsong & Sun, Li & Khosravi, Ali & Jose Garcia Pabon, Juan, 2023. "Thermodynamic modeling and optimization of hybrid linear concentrating photovoltaic and mechanically pumped two-phase loop system," Applied Energy, Elsevier, vol. 333(C).
    18. Ji, Yishuang & Lv, Song & Qian, Zuoqin & Ji, Yitong & Ren, Juwen & Liang, Kaiming & Wang, Shulong, 2022. "Comparative study on cooling method for concentrating photovoltaic system," Energy, Elsevier, vol. 253(C).
    19. Yu, Min & Chen, Fucheng & Zhou, Jinzhi & Yuan, Yanping & Fan, Yi & Li, Guiqiang & Zhao, Xudong & Wang, Zhangyuan & Li, Jing & Zheng, Siming, 2022. "Experimental investigation of a novel vertical loop-heat-pipe PV/T heat and power system under different height differences," Energy, Elsevier, vol. 254(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chan, Siyan & Zhao, Bin & Yu, Qiongwan & Chen, Ken & Hu, Kongfu & Pei, Gang, 2024. "Seasonal heat regulation in photovoltaic/thermal collectors with switchable backplate technology: Experiments and simulations," Renewable Energy, Elsevier, vol. 224(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elsabahy, Mohamed M. & Emam, Mohamed & Sekiguchi, Hidetoshi & Ahmed, Mahmoud, 2024. "Performance mapping of silicon-based solar cell for efficient power generation and thermal utilization: Effect of cell encapsulation, temperature coefficient, and reference efficiency," Applied Energy, Elsevier, vol. 356(C).
    2. Yu, Qinghua & Chen, Xi & Yang, Hongxing, 2021. "Research progress on utilization of phase change materials in photovoltaic/thermal systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Reji Kumar, R. & Samykano, M. & Pandey, A.K. & Kadirgama, K. & Tyagi, V.V., 2020. "Phase change materials and nano-enhanced phase change materials for thermal energy storage in photovoltaic thermal systems: A futuristic approach and its technical challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Kumar, Laveet & Hasanuzzaman, M. & Rahim, N.A. & Islam, M.M., 2021. "Modeling, simulation and outdoor experimental performance analysis of a solar-assisted process heating system for industrial process heat," Renewable Energy, Elsevier, vol. 164(C), pages 656-673.
    5. Mukhamad Faeshol Umam & Md. Hasanuzzaman & Nasrudin Abd Rahim, 2022. "Global Advancement of Nanofluid-Based Sheet and Tube Collectors for a Photovoltaic Thermal System," Energies, MDPI, vol. 15(15), pages 1-37, August.
    6. Rezvanpour, Mohammad & Borooghani, Danial & Torabi, Farschad & Pazoki, Maryam, 2020. "Using CaCl2·6H2O as a phase change material for thermo-regulation and enhancing photovoltaic panels’ conversion efficiency: Experimental study and TRNSYS validation," Renewable Energy, Elsevier, vol. 146(C), pages 1907-1921.
    7. Fu, Zaiguo & Liang, Xiaotian & Li, Yang & Li, Lingtong & Zhu, Qunzhi, 2021. "Performance improvement of a PVT system using a multilayer structural heat exchanger with PCMs," Renewable Energy, Elsevier, vol. 169(C), pages 308-317.
    8. Nižetić, Sandro & Jurčević, Mišo & Čoko, Duje & Arıcı, Müslüm & Hoang, Anh Tuan, 2021. "Implementation of phase change materials for thermal regulation of photovoltaic thermal systems: Comprehensive analysis of design approaches," Energy, Elsevier, vol. 228(C).
    9. Zhang, Chenyu & Wang, Ning & Yang, Qiguo & Xu, Hongtao & Qu, Zhiguo & Fang, Yuan, 2022. "Energy and exergy analysis of a switchable solar photovoltaic/thermal-phase change material system with thermal regulation strategies," Renewable Energy, Elsevier, vol. 196(C), pages 1392-1405.
    10. Cui, Yuanlong & Zhu, Jie & Zhang, Fan & Shao, Yiming & Xue, Yibing, 2022. "Current status and future development of hybrid PV/T system with PCM module: 4E (energy, exergy, economic and environmental) assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. Essa, Mohamed A. & Talaat, M. & Amer, Abdalla & Farahat, M.A., 2021. "Enhancing the photovoltaic system efficiency using porous metallic media integrated with phase change material," Energy, Elsevier, vol. 225(C).
    12. Khani, M.S. & Baneshi, M. & Eslami, M., 2019. "Bi-objective optimization of photovoltaic-thermal (PV/T) solar collectors according to various weather conditions using genetic algorithm: A numerical modeling," Energy, Elsevier, vol. 189(C).
    13. Wen, Xin & Ji, Jie & Li, Zhaomeng & Song, Zhiying, 2023. "Performance assessment of the hybrid PV-MCHP-TE system integrated with PCM in all-day operation: A preliminary numerical investigation," Energy, Elsevier, vol. 278(PA).
    14. Islam, M.M. & Hasanuzzaman, M. & Rahim, N.A. & Pandey, A.K. & Rawa, M. & Kumar, L., 2021. "Real time experimental performance investigation of a NePCM based photovoltaic thermal system: An energetic and exergetic approach," Renewable Energy, Elsevier, vol. 172(C), pages 71-87.
    15. Abou-Ziyan, Hosny & Ibrahim, Mohammed & Abdel-Hameed, Hala, 2020. "Performance modeling and analysis of high-concentration multi-junction photovoltaics using advanced hybrid cooling systems," Applied Energy, Elsevier, vol. 269(C).
    16. Kamel Guedri & Mohamed Salem & Mamdouh El Haj Assad & Jaroon Rungamornrat & Fatimah Malek Mohsen & Yonis M. Buswig, 2022. "PV/Thermal as Promising Technologies in Buildings: A Comprehensive Review on Exergy Analysis," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    17. Badiei, Z. & Eslami, M. & Jafarpur, K., 2020. "Performance improvements in solar flat plate collectors by integrating with phase change materials and fins: A CFD modeling," Energy, Elsevier, vol. 192(C).
    18. B, Prabhu & A, Valan Arasu & P, Gurusamy & A, Amala Mithin Minther Singh & T, Arunkumar, 2024. "Solar photovoltaic cooling using Paraffin phase change material: Comprehensive assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    19. Karthikeyan Velmurugan & Rajvikram Madurai Elavarasan & Pham Van De & Vaithinathan Karthikeyan & Tulja Bhavani Korukonda & Joshuva Arockia Dhanraj & Kanchanok Emsaeng & Md. Shahariar Chowdhury & Kuaan, 2022. "A Review of Heat Batteries Based PV Module Cooling—Case Studies on Performance Enhancement of Large-Scale Solar PV System," Sustainability, MDPI, vol. 14(4), pages 1-65, February.
    20. Abo-Zahhad, Essam M. & Ookawara, Shinichi & Radwan, Ali & El-Shazly, A.H. & Elkady, M.F., 2019. "Numerical analyses of hybrid jet impingement/microchannel cooling device for thermal management of high concentrator triple-junction solar cell," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223019680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.