IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v125y2014icp10-20.html
   My bibliography  Save this article

A total cost perspective on use of polymeric materials in solar collectors – Importance of environmental performance on suitability

Author

Listed:
  • Carlsson, Bo
  • Persson, Helena
  • Meir, Michaela
  • Rekstad, John

Abstract

To assess the suitability of solar collector systems in which polymeric materials are used versus those in which more traditional materials are used, a case study was undertaken. In this case study a solar heating system with polymeric solar collectors was compared with two equivalent but more traditional solar heating systems: one with flat plate solar collectors and one with evacuated tube solar collectors. To make the comparison, a total cost accounting approach was adopted. The life cycle assessment (LCA) results clearly indicated that the polymeric solar collector system is the best as regards climatic and environmental performance when they are expressed in terms of the IPPC 100 a indicator and the Ecoindicator 99, H/A indicator, respectively. In terms of climatic and environmental costs per amount of solar heat collected, the differences between the three kinds of collector systems were small when compared with existing energy prices. With the present tax rates, it seems unlikely that the differences in environmental and climatic costs will have any significant influence on which system is the most favoured, from a total cost point of view. In the choice between a renewable heat source and a heat source based on the use of a fossil fuel, the conclusion was that for climatic performance to be an important economic factor, the tax or trade rate of carbon dioxide emissions must be increased significantly, given the initial EU carbon dioxide emission trade rate. The rate would need to be at least of the same order of magnitude as the general carbon dioxide emission tax rate used in Sweden. If environmental costs took into account not only the greenhouse effect but also other mechanisms for damaging the environment as, for example, the environmental impact factor Ecoindicator 99 does, the viability of solar heating versus that of a natural gas heating system would be much higher.

Suggested Citation

  • Carlsson, Bo & Persson, Helena & Meir, Michaela & Rekstad, John, 2014. "A total cost perspective on use of polymeric materials in solar collectors – Importance of environmental performance on suitability," Applied Energy, Elsevier, vol. 125(C), pages 10-20.
  • Handle: RePEc:eee:appene:v:125:y:2014:i:c:p:10-20
    DOI: 10.1016/j.apenergy.2014.03.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914002578
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.03.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meyers, Steven & Schmitt, Bastian & Vajen, Klaus, 2018. "Renewable process heat from solar thermal and photovoltaics: The development and application of a universal methodology to determine the more economical technology," Applied Energy, Elsevier, vol. 212(C), pages 1537-1552.
    2. Gagliano, Antonio & Aneli, Stefano & Nocera, Francesco, 2019. "Analysis of the performance of a building solar thermal facade (BSTF) for domestic hot water production," Renewable Energy, Elsevier, vol. 142(C), pages 511-526.
    3. Filipović, P. & Dović, D. & Horvat, I. & Ranilović, B., 2023. "Evaluation of a novel polymer solar collector using numerical and experimental methods," Energy, Elsevier, vol. 284(C).
    4. Lee, Minwoo & Kim, Jinyoung & Shin, Hyun Ho & Cho, Wonhee & Kim, Yongchan, 2022. "CO2 emissions and energy performance analysis of ground-source and solar-assisted ground-source heat pumps using low-GWP refrigerants," Energy, Elsevier, vol. 261(PA).
    5. He, Zhaoyu & Farooq, Abdul Samad & Guo, Weimin & Zhang, Peng, 2022. "Optimization of the solar space heating system with thermal energy storage using data-driven approach," Renewable Energy, Elsevier, vol. 190(C), pages 764-776.
    6. Lamnatou, Chr. & Cristofari, C. & Chemisana, D. & Canaletti, J.L., 2016. "Building-integrated solar thermal systems based on vacuum-tube technology: Critical factors focusing on life-cycle environmental profile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1199-1215.
    7. Cerón, J.F. & Pérez-García, J. & Solano, J.P. & García, A. & Herrero-Martín, R., 2015. "A coupled numerical model for tube-on-sheet flat-plate solar liquid collectors. Analysis and validation of the heat transfer mechanisms," Applied Energy, Elsevier, vol. 140(C), pages 275-287.
    8. Juanicó, Luis E. & Di Lalla, Nicolás & González, Alejandro D., 2017. "Full thermal-hydraulic and solar modeling to study low-cost solar collectors based on a single long LDPE hose," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 187-195.
    9. Lee, Minwoo & Ham, Se Hyeon & Lee, Sewon & Kim, Jinyoung & Kim, Yongchan, 2023. "Multi-objective optimization of solar-assisted ground-source heat pumps for minimizing life-cycle cost and climate performance in heating-dominated regions," Energy, Elsevier, vol. 270(C).
    10. Eduardo J. C. Cavalcanti & João Victor M. Ferreira & Monica Carvalho, 2021. "Research on a Solar Hybrid Trigeneration System Based on Exergy and Exergoenvironmental Assessments," Energies, MDPI, vol. 14(22), pages 1-19, November.
    11. Fan, Man & Liang, Hongbo & You, Shijun & Zhang, Huan & Zheng, Wandong & Xia, Junbao, 2018. "Heat transfer analysis of a new volumetric based receiver for parabolic trough solar collector," Energy, Elsevier, vol. 142(C), pages 920-931.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:125:y:2014:i:c:p:10-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.