IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v13y2009i9p2571-2579.html
   My bibliography  Save this article

Bioenergy industries development in China: Dilemma and solution

Author

Listed:
  • Peidong, Zhang
  • Yanli, Yang
  • Yongsheng, Tian
  • Xutong, Yang
  • Yongkai, Zhang
  • Yonghong, Zheng
  • Lisheng, Wang

Abstract

Having 2.8 x 108-3.0 x 108 t/a of wood energy, 4.0 x 106 t/a of oil seeds, 7.7 x 108 t/a of crops straw, 3.97 x 109 t/a of poultry and livestock manure, 1.48 x 108 t/a of municipal waste, and 4.37 x 1010 t/a of organic wastewater, China is in possession of good resource condition for the development of bioenergy industries. Until the end of 2007, China has popularized 2.65 x 107 rural household biogas, established 8318 large and middle-scale biogas projects, and produced 1.08 x 1010 m3/a of biogas; the production of bioethanol, biodiesel, biomass briquettes fuel and biomass power generation reached to 1.5 x 106 t/a, 3.0 x 105 t/a, 6.0 x 104 t/a and 6.42 x 109 kWh, respectively. In recent years, bioenergy industries developed increasingly fast in China. However, the industrial base was weak with some dilemma existing in raw material supply, technological capability, industry standards, policy and regulation, and follow-up services, etc. From the viewpoint of long-term effective development system for bioenergy industries in China, a series of policy suggestions have been offered, such as strengthening strategy research, improving bioenergy industries development policies and plan, enhancing scientific research input, persisting in technology innovation, establishing product quality standard, improving industrial standard system, opening market and accelerating commercialization, etc. It is expected that the advices mentioned above could be helpful for the improvement of bioenergy industries development.

Suggested Citation

  • Peidong, Zhang & Yanli, Yang & Yongsheng, Tian & Xutong, Yang & Yongkai, Zhang & Yonghong, Zheng & Lisheng, Wang, 2009. "Bioenergy industries development in China: Dilemma and solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2571-2579, December.
  • Handle: RePEc:eee:rensus:v:13:y:2009:i:9:p:2571-2579
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(09)00115-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gautam, Rajeeb & Baral, Sumit & Herat, Sunil, 2009. "Biogas as a sustainable energy source in Nepal: Present status and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 248-252, January.
    2. Elghali, Lucia & Clift, Roland & Sinclair, Philip & Panoutsou, Calliope & Bauen, Ausilio, 2007. "Developing a sustainability framework for the assessment of bioenergy systems," Energy Policy, Elsevier, vol. 35(12), pages 6075-6083, December.
    3. Han, Jingyi & Mol, Arthur P.J. & Lu, Yonglong & Zhang, Lei, 2008. "Small-scale bioenergy projects in rural China: Lessons to be learnt," Energy Policy, Elsevier, vol. 36(6), pages 2154-2162, June.
    4. Zhou, Xinping & Xiao, Bo & Ochieng, Reccab M. & Yang, Jiakuan, 2009. "Utilization of carbon-negative biofuels from low-input high-diversity grassland biomass for energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 479-485, February.
    5. Cai, Junmeng & Liu, Ronghou & Deng, Chunjian, 2008. "An assessment of biomass resources availability in Shanghai: 2005 analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1997-2004, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wakeel, Muhammad & Hayat, Tasawer & Shah, Noor Samad & Iqbal, Jibran & Haq Khan, Zia Ul & Shah, Ghulam Mustafa & Rasool, Atta, 2023. "Biogas Energy Resources in Pakistan Status, Potential, and Barriers," Utilities Policy, Elsevier, vol. 84(C).
    2. Qu, Mei & Ahponen, Pirkkoliisa & Tahvanainen, Liisa & Pelkonen, Paavo, 2010. "Chinese academic experts' assessment for forest bio-energy development in China," Energy Policy, Elsevier, vol. 38(11), pages 6767-6775, November.
    3. Xin-Gang, Zhao & Tian-Tian, Feng & Yu, Ma & Yi-Sheng, Yang & Xue-Fu, Pan, 2015. "Analysis on investment strategies in China: the case of biomass direct combustion power generation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 760-772.
    4. Shrasti Vasistha & Anwesha Khanra & Monika Prakash Rai & Shakeel Ahmad Khan & Zengling Ma & Heli Siti Halimatul Munawaroh & Doris Ying Ying Tang & Pau Loke Show, 2023. "Exploring the Pivotal Significance of Microalgae-Derived Sustainable Lipid Production: A Critical Review of Green Bioenergy Development," Energies, MDPI, vol. 16(1), pages 1-27, January.
    5. Lin, Boqiang & Raza, Muhammad Yousaf, 2020. "Analysis of energy security indicators and CO2 emissions. A case from a developing economy," Energy, Elsevier, vol. 200(C).
    6. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.
    7. Ben Zhang & Jie Yang & Yinxia Cao, 2021. "Assessing Potential Bioenergy Production on Urban Marginal Land in 20 Major Cities of China by the Use of Multi-View High-Resolution Remote Sensing Data," Sustainability, MDPI, vol. 13(13), pages 1-20, June.
    8. Ming, Zeng & Ximei, Liu & Na, Li & Song, Xue, 2013. "Overall review of renewable energy tariff policy in China: Evolution, implementation, problems and countermeasures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 260-271.
    9. Jiang, Xinyuan & Sommer, Sven G. & Christensen, Knud V., 2011. "A review of the biogas industry in China," Energy Policy, Elsevier, vol. 39(10), pages 6073-6081, October.
    10. Mirzabaev, Alisher & Guta, Dawit & Goedecke, Jann & Gaur, Varun & Börner, Jan & Virchow, Detlef & Denich, Manfred & von Braun, Joachim, 2014. "Bioenergy, Food Security and Poverty Reduction: Mitigating tradeoffs and promoting synergies along the Water- Energy-Food Security Nexus," Working Papers 180421, University of Bonn, Center for Development Research (ZEF).
    11. Negash, Martha & Riera, Olivia, 2014. "Biodiesel value chain and access to energy in Ethiopia: Policies and business prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 975-985.
    12. Xingang, Zhao & Jieyu, Wang & Xiaomeng, Liu & Pingkuo, Liu, 2012. "China’s wind, biomass and solar power generation: What the situation tells us?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6173-6182.
    13. Zhang, Yong & Yu, Yifeng & Li, Tiezhu & Zou, Bai, 2011. "Analyzing Chinese consumers' perception for biofuels implementation: The private vehicles owner's investigating in Nanjing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2299-2309, June.
    14. Aytav, Emre & Kocar, Günnur, 2013. "Biodiesel from the perspective of Turkey: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 335-350.
    15. Rahmani, Ali Mohammad & Tyagi, Vinay Kumar & Kazmi, A.A. & Ojha, Chandra Shekhar P., 2023. "Hydrothermal and thermal-acid pretreatments of wheat straw: Methane yield, recalcitrant formation, process inhibition, kinetic modeling," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Hengyun & Oxley, Les & Gibson, John & Li, Wen, 2010. "A survey of China's renewable energy economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 438-445, January.
    2. Long, Huiling & Li, Xiaobing & Wang, Hong & Jia, Jingdun, 2013. "Biomass resources and their bioenergy potential estimation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 344-352.
    3. Wakeel, Muhammad & Hayat, Tasawer & Shah, Noor Samad & Iqbal, Jibran & Haq Khan, Zia Ul & Shah, Ghulam Mustafa & Rasool, Atta, 2023. "Biogas Energy Resources in Pakistan Status, Potential, and Barriers," Utilities Policy, Elsevier, vol. 84(C).
    4. Zanxin Wang & Saqib Ali & Ahsan Akbar & Farhan Rasool, 2020. "Determining the Influencing Factors of Biogas Technology Adoption Intention in Pakistan: The Moderating Role of Social Media," IJERPH, MDPI, vol. 17(7), pages 1-20, March.
    5. Tu, Wubin & Zhang, LingXian & Zhou, Zhongren & Liu, Xue & Fu, Zetian, 2011. "The development of renewable energy in resource-rich region: A case in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 856-860, January.
    6. Ni, Ji-Qin, 2024. "A review of household and industrial anaerobic digestion in Asia: Biogas development and safety incidents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    7. Liu, Liwei & Ye, Junhong & Zhao, Yufei & Zhao, Erdong, 2015. "The plight of the biomass power generation industry in China – A supply chain risk perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 680-692.
    8. Budzianowski, Wojciech Marcin, 2011. "Can ‘negative net CO2 emissions’ from decarbonised biogas-to-electricity contribute to solving Poland’s carbon capture and sequestration dilemmas?," Energy, Elsevier, vol. 36(11), pages 6318-6325.
    9. Baruah, Debendra Chandra & Enweremadu, Christopher Chintua, 2019. "Prospects of decentralized renewable energy to improve energy access: A resource-inventory-based analysis of South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 328-341.
    10. Changbo Wang & Lixiao Zhang & Shuying Yang & Mingyue Pang, 2012. "A Hybrid Life-Cycle Assessment of Nonrenewable Energy and Greenhouse-Gas Emissions of a Village-Level Biomass Gasification Project in China," Energies, MDPI, vol. 5(8), pages 1-16, July.
    11. Maes, Wouter H. & Verbist, Bruno, 2012. "Increasing the sustainability of household cooking in developing countries: Policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4204-4221.
    12. Jun Hou & Weifeng Zhang & Pei Wang & Zhengxia Dou & Liwei Gao & David Styles, 2017. "Greenhouse Gas Mitigation of Rural Household Biogas Systems in China: A Life Cycle Assessment," Energies, MDPI, vol. 10(2), pages 1-14, February.
    13. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.
    14. Melts, Indrek & Heinsoo, Katrin & Nurk, Liina & Pärn, Linnar, 2013. "Comparison of two different bioenergy production options from late harvested biomass of Estonian semi-natural grasslands," Energy, Elsevier, vol. 61(C), pages 6-12.
    15. Suberu, Mohammed Yekini & Mustafa, Mohd Wazir & Bashir, Nouruddeen & Muhamad, Nor Asiah & Mokhtar, Ahmad Safawi, 2013. "Power sector renewable energy integration for expanding access to electricity in sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 630-642.
    16. Song, Guobao & Song, Jie & Zhang, Shushen, 2016. "Modelling the policies of optimal straw use for maximum mitigation of climate change in China from a system perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 789-810.
    17. Sun, Dingqiang & Bai, Junfei & Qiu, Huanguang & Cai, Yaqing, 2014. "Impact of government subsidies on household biogas use in rural China," Energy Policy, Elsevier, vol. 73(C), pages 748-756.
    18. He, Guizhen & Bluemling, Bettina & Mol, Arthur P.J. & Zhang, Lei & Lu, Yonglong, 2013. "Comparing centralized and decentralized bio-energy systems in rural China," Energy Policy, Elsevier, vol. 63(C), pages 34-43.
    19. Arthur, Richard & Baidoo, Martina Francisca & Antwi, Edward, 2011. "Biogas as a potential renewable energy source: A Ghanaian case study," Renewable Energy, Elsevier, vol. 36(5), pages 1510-1516.
    20. Yuan, Xueliang & Zuo, Jian & Ma, Chunyuan, 2011. "Social acceptance of solar energy technologies in China--End users' perspective," Energy Policy, Elsevier, vol. 39(3), pages 1031-1036, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:13:y:2009:i:9:p:2571-2579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.