IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v305y2024ics0360544224020942.html
   My bibliography  Save this article

Ultra-short-term wind power forecasting based on a dual-channel deep learning model with improved coot optimization algorithm

Author

Listed:
  • He, Xingyue
  • He, Bitao
  • Qin, Tao
  • Lin, Chuan
  • Yang, Jing

Abstract

The large-scale integration of wind power to the grid poses some potential challenges to the power system. Accurate wind power forecasts reduce the impact of the nonlinearities and volatility of wind power generation. A two-channel deep learning model based on an improved coot optimization algorithm (ICOA) is proposed. First, the use of long short-term memory (LSTM) builds a channel for the extraction of chronological characteristics of historical power. Second, a temporal convolutional network (TCN) is adopted as a hybrid feature-extraction channel for multi-dimensional meteorological data, and by incorporating the self-attention mechanism (SA), the ability of TCN to extract internal information from meteorological features is enhanced. Finally, the ICOA that introduces nonlinear decision factor, adaptive dynamic boundary, and Cauchy mutation is used to optimize the model hyperparameters. The simulation analysis is carried out on the winter and summer measured data of a wind farm in Xinjiang. The results show that compared with the traditional LSTM model, the root mean square error and the mean absolute error of the proposed method are reduced by 10.35 % and 16.27 % on average, respectively, and the prediction accuracy is higher than that of other comparative models, which verifies the superiority of our proposed model.

Suggested Citation

  • He, Xingyue & He, Bitao & Qin, Tao & Lin, Chuan & Yang, Jing, 2024. "Ultra-short-term wind power forecasting based on a dual-channel deep learning model with improved coot optimization algorithm," Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224020942
    DOI: 10.1016/j.energy.2024.132320
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224020942
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132320?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224020942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.