IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223017814.html
   My bibliography  Save this article

Generation and evaluation of a synthetic dataset to improve fault detection in district heating and cooling systems

Author

Listed:
  • Vallee, Mathieu
  • Wissocq, Thibaut
  • Gaoua, Yacine
  • Lamaison, Nicolas

Abstract

This paper investigates various types of faults in District Heating & Cooling (DHC) systems. Many authors point out that the lack of data hinders the development of good data-driven models for fault detection and diagnosis (FDD). In this work, we design a reference dataset based on simulation and use it to evaluate Machine Learning (ML) models for fault detection.

Suggested Citation

  • Vallee, Mathieu & Wissocq, Thibaut & Gaoua, Yacine & Lamaison, Nicolas, 2023. "Generation and evaluation of a synthetic dataset to improve fault detection in district heating and cooling systems," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223017814
    DOI: 10.1016/j.energy.2023.128387
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223017814
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128387?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. van Dreven, Jonne & Boeva, Veselka & Abghari, Shahrooz & Grahn, HÃ¥kan & Al Koussa, Jad, 2024. "A systematic approach for data generation for intelligent fault detection and diagnosis in District Heating," Energy, Elsevier, vol. 307(C).
    2. Bi, Yubo & Wu, Qiulan & Wang, Shilu & Shi, Jihao & Cong, Haiyong & Ye, Lili & Gao, Wei & Bi, Mingshu, 2023. "Hydrogen leakage location prediction at hydrogen refueling stations based on deep learning," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223017814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.