IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v307y2024ics036054422402485x.html
   My bibliography  Save this article

A systematic approach for data generation for intelligent fault detection and diagnosis in District Heating

Author

Listed:
  • van Dreven, Jonne
  • Boeva, Veselka
  • Abghari, Shahrooz
  • Grahn, Håkan
  • Al Koussa, Jad

Abstract

This study introduces a novel systematic approach to address the challenge of labeled data scarcity for fault detection and diagnosis (FDD) in District Heating (DH) systems. To replicate real-world DH fault scenarios, we have created a controlled laboratory emulation of a generic DH substation integrated with a climate chamber. Furthermore, we present an FDD pipeline using an isolation forest and a one-class support vector machine for fault detection alongside a random forest and a support vector machine for fault diagnosis. Our research analyzed the impact of data sampling frequencies on the FDD models, revealing that shorter intervals, such as 1-min and 5-min, significantly improve FDD performance. We provide detailed information on six scenarios, including normal operation, a minor valve leak, a valve leak, a stuck valve, a high heat curve, and a temperature sensor deviation. For each scenario, we present their signature, quantifying their unique behavior and providing deeper insights into the operational implications. The signatures suggest that, while variable, faults have a consistent pattern seen in the generic DH substation. While this work contributes directly to the DH field, our methodology also extends its applicability to a broader context where labeled data is scarce.

Suggested Citation

  • van Dreven, Jonne & Boeva, Veselka & Abghari, Shahrooz & Grahn, Håkan & Al Koussa, Jad, 2024. "A systematic approach for data generation for intelligent fault detection and diagnosis in District Heating," Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:energy:v:307:y:2024:i:c:s036054422402485x
    DOI: 10.1016/j.energy.2024.132711
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422402485X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132711?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
    2. Neumayer, Martin & Stecher, Dominik & Grimm, Sebastian & Maier, Andreas & Bücker, Dominikus & Schmidt, Jochen, 2023. "Fault and anomaly detection in district heating substations: A survey on methodology and data sets," Energy, Elsevier, vol. 276(C).
    3. Vallee, Mathieu & Wissocq, Thibaut & Gaoua, Yacine & Lamaison, Nicolas, 2023. "Generation and evaluation of a synthetic dataset to improve fault detection in district heating and cooling systems," Energy, Elsevier, vol. 283(C).
    4. Zhong, Fangliang & Calautit, John Kaiser & Wu, Yupeng, 2023. "Fault data seasonal imbalance and insufficiency impacts on data-driven heating, ventilation and air-conditioning fault detection and diagnosis performances for energy-efficient building operations," Energy, Elsevier, vol. 282(C).
    5. Bode, Gerrit & Thul, Simon & Baranski, Marc & Müller, Dirk, 2020. "Real-world application of machine-learning-based fault detection trained with experimental data," Energy, Elsevier, vol. 198(C).
    6. Kim, Ryunhee & Hong, Yejin & Choi, Youngwoong & Yoon, Sungmin, 2021. "System-level fouling detection of district heating substations using virtual-sensor-assisted building automation system," Energy, Elsevier, vol. 227(C).
    7. Gadd, Henrik & Werner, Sven, 2015. "Fault detection in district heating substations," Applied Energy, Elsevier, vol. 157(C), pages 51-59.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guelpa, E. & Capone, M. & Sciacovelli, A. & Vasset, N. & Baviere, R. & Verda, V., 2023. "Reduction of supply temperature in existing district heating: A review of strategies and implementations," Energy, Elsevier, vol. 262(PB).
    2. Østergaard, Dorte Skaarup & Smith, Kevin Michael & Tunzi, Michele & Svendsen, Svend, 2022. "Low-temperature operation of heating systems to enable 4th generation district heating: A review," Energy, Elsevier, vol. 248(C).
    3. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Yan, Jingjing & Zhang, Huan & Wang, Yaran & Zhu, Zhaozhe & Bai, He & Li, Qicheng & Zheng, Lijun & Gao, Xinyong & You, Shijun, 2023. "Difference analysis and recognition of hydraulic oscillation by two types of sudden faults on long-distance district heating pipeline," Energy, Elsevier, vol. 284(C).
    5. Hong, Yejin & Yoon, Sungmin & Choi, Sebin, 2023. "Operational signature-based symbolic hierarchical clustering for building energy, operation, and efficiency towards carbon neutrality," Energy, Elsevier, vol. 265(C).
    6. Alessandro Guzzini & Marco Pellegrini & Edoardo Pelliconi & Cesare Saccani, 2020. "Low Temperature District Heating: An Expert Opinion Survey," Energies, MDPI, vol. 13(4), pages 1-34, February.
    7. Benakopoulos, Theofanis & Tunzi, Michele & Salenbien, Robbe & Svendsen, Svend, 2021. "Strategy for low-temperature operation of radiator systems using data from existing digital heat cost allocators," Energy, Elsevier, vol. 231(C).
    8. Sarran, Lucile & Smith, Kevin M. & Hviid, Christian A. & Rode, Carsten, 2022. "Grey-box modelling and virtual sensors enabling continuous commissioning of hydronic floor heating," Energy, Elsevier, vol. 261(PB).
    9. Benakopoulos, Theofanis & Tunzi, Michele & Salenbien, Robbe & Hansen, Kasper Klan & Svendsen, Svend, 2022. "Implementation of a strategy for low-temperature operation of radiator systems using data from existing digital heat cost allocators," Energy, Elsevier, vol. 251(C).
    10. Hakan İbrahim Tol & Habtamu Bayera Madessa, 2024. "Return-Temperature Reduction at District Heating Systems: Focus on End-User Sites," Energies, MDPI, vol. 17(19), pages 1-46, September.
    11. Hong, Yejin & Yoon, Sungmin, 2022. "Holistic Operational Signatures for an energy-efficient district heating substation in buildings," Energy, Elsevier, vol. 250(C).
    12. Calikus, Ece & Nowaczyk, Sławomir & Sant'Anna, Anita & Gadd, Henrik & Werner, Sven, 2019. "A data-driven approach for discovering heat load patterns in district heating," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    13. Fester, Jakob & Østergaard, Peter Friis & Bentsen, Fredrik & Nielsen, Brian Kongsgaard, 2023. "A data-driven method for heat loss estimation from district heating service pipes using heat meter- and GIS data," Energy, Elsevier, vol. 277(C).
    14. Leoni, Paolo & Geyer, Roman & Schmidt, Ralf-Roman, 2020. "Developing innovative business models for reducing return temperatures in district heating systems: Approach and first results," Energy, Elsevier, vol. 195(C).
    15. Neumayer, Martin & Stecher, Dominik & Grimm, Sebastian & Maier, Andreas & Bücker, Dominikus & Schmidt, Jochen, 2023. "Fault and anomaly detection in district heating substations: A survey on methodology and data sets," Energy, Elsevier, vol. 276(C).
    16. Andrea Menapace & Simone Santopietro & Rudy Gargano & Maurizio Righetti, 2021. "Stochastic Generation of District Heat Load," Energies, MDPI, vol. 14(17), pages 1-17, August.
    17. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    18. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    19. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    20. Østergaard, Poul Alberg & Werner, Sven & Dyrelund, Anders & Lund, Henrik & Arabkoohsar, Ahmad & Sorknæs, Peter & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Mathiesen, Brian Vad, 2022. "The four generations of district cooling - A categorization of the development in district cooling from origin to future prospect," Energy, Elsevier, vol. 253(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:307:y:2024:i:c:s036054422402485x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.