IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223023265.html
   My bibliography  Save this article

Simulation study and performance analysis of free piston linear generator (FPLG) used for ORC system

Author

Listed:
  • Hou, Xiaochen
  • Ji, Deliang
  • Zhou, Dan
  • Gao, Haibo

Abstract

Due to advantage of low friction loss, simple structure and good sealing, free piston linear generator (FPLG) presents great application potential in ORC system. In this study, the FPLG simulation model was built using GT Suite and MATLAB/Simulink, and the model accuracy was verified through comparison with experimental data and error analysis. The influence of FPLG operation parameters, model parameters and full consideration of friction and EV characteristics on FPLG performance were studied. All the relative errors are within 10%, namely, the FPLG model has high reliability. Each indicator varies significantly with intake pressure, but relatively weakly with intake temperature. There is an optimal external load for maximum power output, and an optimal pipeline diameter for maximum velocity and average power output. As friction coefficient increases, both velocity and power output increase first and then decrease. When friction coefficient is 1200 N-s/m, average power output and velocity reach the maximum value of 102 W and 0.83 m/s, respectively. The velocity gradually decreases with the increasing flux linkage, while electromagnetic force and power output show a increasing trend. The research results can provide reference significance for optimization of FPLG and provide guidance for the application in ORC system.

Suggested Citation

  • Hou, Xiaochen & Ji, Deliang & Zhou, Dan & Gao, Haibo, 2023. "Simulation study and performance analysis of free piston linear generator (FPLG) used for ORC system," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223023265
    DOI: 10.1016/j.energy.2023.128932
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223023265
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128932?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mikalsen, R. & Roskilly, A.P., 2010. "The control of a free-piston engine generator. Part 1: Fundamental analyses," Applied Energy, Elsevier, vol. 87(4), pages 1273-1280, April.
    2. Emhardt, Simon & Tian, Guohong & Song, Panpan & Chew, John & Wei, Mingshan, 2022. "CFD analysis of the influence of variable wall thickness on the aerodynamic performance of small scale ORC scroll expanders," Energy, Elsevier, vol. 244(PA).
    3. Mikalsen, R. & Jones, E. & Roskilly, A.P., 2010. "Predictive piston motion control in a free-piston internal combustion engine," Applied Energy, Elsevier, vol. 87(5), pages 1722-1728, May.
    4. Burugupally, Sindhu Preetham & Weiss, Leland, 2019. "Design and performance of a miniature free piston expander," Energy, Elsevier, vol. 170(C), pages 611-618.
    5. Shi, Lingfeng & Shu, Gequn & Tian, Hua & Deng, Shuai, 2018. "A review of modified Organic Rankine cycles (ORCs) for internal combustion engine waste heat recovery (ICE-WHR)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 95-110.
    6. Preetham, B.S. & Weiss, L., 2016. "Investigations of a new free piston expander engine cycle," Energy, Elsevier, vol. 106(C), pages 535-545.
    7. Hou, Xiaochen & Zhang, Hongguang & Xu, Yonghong & Yu, Fei & Zhao, Tenglong & Tian, Yaming & Yang, Yuxin & Zhao, Rui, 2018. "External load resistance effect on the free piston expander-linear generator for organic Rankine cycle waste heat recovery system," Applied Energy, Elsevier, vol. 212(C), pages 1252-1261.
    8. Hou, Xiaochen & Zhang, Hongguang & Zhao, Tenglong & Xu, Yonghong & Tian, Yaming & Li, Jian & Zhang, Mengru & Wu, Yuting, 2019. "A comparison study and performance analysis of free piston expander-linear generator for organic Rankine cycle system," Energy, Elsevier, vol. 167(C), pages 136-143.
    9. Xu, Yonghong & Tong, Liang & Zhang, Hongguang & Hou, Xiaochen & Yang, Fubin & Yu, Fei & Yang, Yuxin & Liu, Rong & Tian, Yaming & Zhao, Tenglong, 2018. "Experimental and simulation study of a free piston expander–linear generator for small-scale organic Rankine cycle," Energy, Elsevier, vol. 161(C), pages 776-791.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baoying Peng & Kai Zhang & Liang Tong & Yonghong Xu, 2023. "Research on Gas Recycling of Free-Piston Expander–Linear Generator for Organic Rankine Cycle of Vehicle," Sustainability, MDPI, vol. 15(18), pages 1-16, September.
    2. Zhuxian Liu & Zhong Wu & Yonghong Xu & Hongguang Zhang & Jian Zhang & Fubin Yang, 2022. "Performance Investigation of Single–Piston Free Piston Expander–Linear Generator with Multi–Parameter Based on Simulation Model," Energies, MDPI, vol. 15(23), pages 1-28, November.
    3. Hou, Xiaochen & Zhang, Hongguang & Xu, Yonghong & Yu, Fei & Zhao, Tenglong & Tian, Yaming & Yang, Yuxin & Zhao, Rui, 2018. "External load resistance effect on the free piston expander-linear generator for organic Rankine cycle waste heat recovery system," Applied Energy, Elsevier, vol. 212(C), pages 1252-1261.
    4. Wang, Yaodong & Chen, Lin & Jia, Boru & Roskilly, Anthony Paul, 2017. "Experimental study of the operation characteristics of an air-driven free-piston linear expander," Applied Energy, Elsevier, vol. 195(C), pages 93-99.
    5. Hou, Xiaochen & Zhang, Hongguang & Yu, Fei & Liu, Hongda & Yang, Fubin & Xu, Yonghong & Tian, Yaming & Li, Gaosheng, 2017. "Free piston expander-linear generator used for organic Rankine cycle waste heat recovery system," Applied Energy, Elsevier, vol. 208(C), pages 1297-1307.
    6. Hou, Xiaochen & Zhang, Hongguang & Zhao, Tenglong & Xu, Yonghong & Tian, Yaming & Li, Jian & Zhang, Mengru & Wu, Yuting, 2019. "A comparison study and performance analysis of free piston expander-linear generator for organic Rankine cycle system," Energy, Elsevier, vol. 167(C), pages 136-143.
    7. Zhang, Zhiyuan & Feng, Huihua & Jia, Boru & Zuo, Zhengxing & Yan, Xiaodong & Smallbone, Andrew & Roskilly, Anthony Paul, 2022. "Identification and analysis on the variation sources of a dual-cylinder free piston engine generator and their influence on system operating characteristics," Energy, Elsevier, vol. 242(C).
    8. Xu, Yonghong & Tong, Liang & Zhang, Hongguang & Hou, Xiaochen & Yang, Fubin & Yu, Fei & Yang, Yuxin & Liu, Rong & Tian, Yaming & Zhao, Tenglong, 2018. "Experimental and simulation study of a free piston expander–linear generator for small-scale organic Rankine cycle," Energy, Elsevier, vol. 161(C), pages 776-791.
    9. Wu, Zhong & Zhang, Hongguang & Liu, Zhongliang & Hou, Xiaochen & Li, Jian & Yang, Fubin & Zhang, Jian, 2021. "Experimental study on the performance of single-piston free-piston expander—linear generator," Energy, Elsevier, vol. 221(C).
    10. Wu, Zhong & Zhang, Hongguang & Liu, Zhongliang & Tian, Guohong & Hou, Xiaochen & Yang, Fubin, 2022. "Force and energy analysis of single-piston free-piston expander—linear generator," Energy, Elsevier, vol. 251(C).
    11. Guo, Chendong & Zuo, Zhengxing & Feng, Huihua & Jia, Boru & Roskilly, Tony, 2020. "Review of recent advances of free-piston internal combustion engine linear generator," Applied Energy, Elsevier, vol. 269(C).
    12. Bianchi, M. & Branchini, L. & De Pascale, A. & Melino, F. & Ottaviano, S. & Peretto, A. & Torricelli, N., 2019. "Application and comparison of semi-empirical models for performance prediction of a kW-size reciprocating piston expander," Applied Energy, Elsevier, vol. 249(C), pages 143-156.
    13. Li, Jian & Yang, Fubin & Zhang, Hongguang & Wu, Zhong & Tian, Yaming & Hou, Xiaochen & Xu, Yonghong & Ren, Jing, 2020. "Comparative analysis of different valve timing control methods for single-piston free piston expander-linear generator via an orthogonal experimental design," Energy, Elsevier, vol. 195(C).
    14. Peng Sun & Chi Zhang & Jinhua Chen & Fei Zhao & Youyong Liao & Guilin Yang & Chinyin Chen, 2016. "Decoupling Design and Verification of a Free-Piston Linear Generator," Energies, MDPI, vol. 9(12), pages 1-23, December.
    15. Mao, Jinlong & Zuo, Zhengxing & Feng, Huihua, 2011. "Parameters coupling designation of diesel free-piston linear alternator," Applied Energy, Elsevier, vol. 88(12), pages 4577-4589.
    16. Lim, Ocktaeck & Hung, Nguyen Ba & Oh, Seokyoung & Kim, Gangchul & Song, Hanho & Iida, Norimasa, 2015. "A study of operating parameters on the linear spark ignition engine," Applied Energy, Elsevier, vol. 160(C), pages 746-760.
    17. Jia, Boru & Tian, Guohong & Feng, Huihua & Zuo, Zhengxing & Roskilly, A.P., 2015. "An experimental investigation into the starting process of free-piston engine generator," Applied Energy, Elsevier, vol. 157(C), pages 798-804.
    18. Tian, Yaming & Zhang, Hongguang & Li, Jian & Hou, Xiaochen & Zhao, Tenglong & Yang, Fubin & Xu, Yonghong & Wang, Xin, 2018. "Development and validation of a single-piston free piston expander-linear generator for a small-scale organic Rankine cycle," Energy, Elsevier, vol. 161(C), pages 809-820.
    19. Hung, Nguyen Ba & Lim, Ocktaeck, 2016. "A review of free-piston linear engines," Applied Energy, Elsevier, vol. 178(C), pages 78-97.
    20. Jia, Boru & Smallbone, Andrew & Mikalsen, Rikard & Feng, Huihua & Zuo, Zhengxing & Roskilly, Anthony Paul, 2017. "Disturbance analysis of a free-piston engine generator using a validated fast-response numerical model," Applied Energy, Elsevier, vol. 185(P1), pages 440-451.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223023265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.