IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v168y2021icp516-543.html
   My bibliography  Save this article

Proposal of a novel GPU-accelerated lifetime optimization method for onshore wind turbine dampers under real wind distribution

Author

Listed:
  • Liu, Zhenqing
  • Wang, Yize
  • Nyangi, Patrice
  • Zhu, Zhiwen
  • Hua, Xugang

Abstract

In recent years, the criticality of fore-aft vibrations induced by winds on wind turbine towers has increased; these vibrations are generally evaluated using equivalent fatigue load (EFL). This is the first study to adopt wind speed histories from large eddy simulations as input for dynamic analysis of wind turbines, and to evaluate EFL against real wind distribution. Tuned mass damper (TMD) and rotational inertial double tuned mass damper (RIDTMD) were employed to control these vibrations. Parametric analysis of the damper parameters was conducted. An innovative global optimization tool was developed based on a radial basis function neural network and genetic algorithm. Moreover, for the first time, GPU acceleration technologies were adopted to enable the optimizations of dampers through massive cases. Numerical results show that damper optimizations under real wind distributions are essential, and that optimized dampers reduce 44% EFL. The performance of RIDTMD is better than TMD but has a narrower system control bandwidth. The optimized dampers are significantly affected by wind speed; however, they are least affected by wind direction. The developed GPU-based codes can run 2001 times faster than the CPU-based ones, and the optimization tool can further reduce 85% computational time, which is open to other researchers.

Suggested Citation

  • Liu, Zhenqing & Wang, Yize & Nyangi, Patrice & Zhu, Zhiwen & Hua, Xugang, 2021. "Proposal of a novel GPU-accelerated lifetime optimization method for onshore wind turbine dampers under real wind distribution," Renewable Energy, Elsevier, vol. 168(C), pages 516-543.
  • Handle: RePEc:eee:renene:v:168:y:2021:i:c:p:516-543
    DOI: 10.1016/j.renene.2020.12.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120320139
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.12.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rezaei, Ramtin & Fromme, Paul & Duffour, Philippe, 2018. "Fatigue life sensitivity of monopile-supported offshore wind turbines to damping," Renewable Energy, Elsevier, vol. 123(C), pages 450-459.
    2. Silva, Paulo Augusto Strobel Freitas & Shinomiya, Léo Daiki & de Oliveira, Taygoara Felamingo & Vaz, Jerson Rogério Pinheiro & Amarante Mesquita, André Luiz & Brasil Junior, Antonio Cesar Pinho, 2017. "Analysis of cavitation for the optimized design of hydrokinetic turbines using BEM," Applied Energy, Elsevier, vol. 185(P2), pages 1281-1291.
    3. Ponta, Fernando L. & Otero, Alejandro D. & Lago, Lucas I. & Rajan, Anurag, 2016. "Effects of rotor deformation in wind-turbine performance: The Dynamic Rotor Deformation Blade Element Momentum model (DRD–BEM)," Renewable Energy, Elsevier, vol. 92(C), pages 157-170.
    4. Rahman, Mahmudur & Ong, Zhi Chao & Chong, Wen Tong & Julai, Sabariah & Khoo, Shin Yee, 2015. "Performance enhancement of wind turbine systems with vibration control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 43-54.
    5. Luna, Julio & Falkenberg, Ole & Gros, Sébastien & Schild, Axel, 2020. "Wind turbine fatigue reduction based on economic-tracking NMPC with direct ANN fatigue estimation," Renewable Energy, Elsevier, vol. 147(P1), pages 1632-1641.
    6. Grady, S.A. & Hussaini, M.Y. & Abdullah, M.M., 2005. "Placement of wind turbines using genetic algorithms," Renewable Energy, Elsevier, vol. 30(2), pages 259-270.
    7. Evans, S.P. & Bradney, D.R. & Clausen, P.D., 2018. "Assessing the IEC simplified fatigue load equations for small wind turbine blades: How simple is too simple?," Renewable Energy, Elsevier, vol. 127(C), pages 24-31.
    8. Wan, Chunqiu & Wang, Jun & Yang, Geng & Gu, Huajie & Zhang, Xing, 2012. "Wind farm micro-siting by Gaussian particle swarm optimization with local search strategy," Renewable Energy, Elsevier, vol. 48(C), pages 276-286.
    9. Velarde, Joey & Kramhøft, Claus & Sørensen, John Dalsgaard, 2019. "Global sensitivity analysis of offshore wind turbine foundation fatigue loads," Renewable Energy, Elsevier, vol. 140(C), pages 177-189.
    10. Menon, Muraleekrishnan & Ponta, Fernando L., 2017. "Dynamic aeroelastic behavior of wind turbine rotors in rapid pitch-control actions," Renewable Energy, Elsevier, vol. 107(C), pages 327-339.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yize & Liu, Zhenqing & Ma, Xueyun, 2023. "Improvement of tuned rolling cylinder damper for wind turbine tower vibration control considering real wind distribution," Renewable Energy, Elsevier, vol. 216(C).
    2. Zhang, Dongqin & Liu, Zhenqing & Li, Weipeng & Hu, Gang, 2023. "LES simulation study of wind turbine aerodynamic characteristics with fluid-structure interaction analysis considering blade and tower flexibility," Energy, Elsevier, vol. 282(C).
    3. Shi Liu & Yi Yang & Chengyuan Wang & Yuangang Tu & Zhenqing Liu, 2021. "Proposal of a Novel Mooring System Using Three-Bifurcated Mooring Lines for Spar-Type Off-Shore Wind Turbines," Energies, MDPI, vol. 14(24), pages 1-33, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    2. Song, Mengxuan & Wen, Yi & Duan, Bin & Wang, Jun & Gong, Qi, 2017. "Micro-siting optimization of a wind farm built in multiple phases," Energy, Elsevier, vol. 137(C), pages 95-103.
    3. Javier Serrano González & Manuel Burgos Payán & Jesús Manuel Riquelme Santos & Ángel Gaspar González Rodríguez, 2021. "Optimal Micro-Siting of Weathervaning Floating Wind Turbines," Energies, MDPI, vol. 14(4), pages 1-19, February.
    4. Guirguis, David & Romero, David A. & Amon, Cristina H., 2017. "Gradient-based multidisciplinary design of wind farms with continuous-variable formulations," Applied Energy, Elsevier, vol. 197(C), pages 279-291.
    5. Park, Jinkyoo & Law, Kincho H., 2015. "Layout optimization for maximizing wind farm power production using sequential convex programming," Applied Energy, Elsevier, vol. 151(C), pages 320-334.
    6. Wu, Xiawei & Hu, Weihao & Huang, Qi & Chen, Cong & Jacobson, Mark Z. & Chen, Zhe, 2020. "Optimizing the layout of onshore wind farms to minimize noise," Applied Energy, Elsevier, vol. 267(C).
    7. Hou, Peng & Hu, Weihao & Soltani, Mohsen & Chen, Cong & Chen, Zhe, 2017. "Combined optimization for offshore wind turbine micro siting," Applied Energy, Elsevier, vol. 189(C), pages 271-282.
    8. Ju Feng & Wen Zhong Shen, 2015. "Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction," Energies, MDPI, vol. 8(4), pages 1-18, April.
    9. Gonzalez-Rodriguez, Angel G. & Burgos-Payan, Manuel & Riquelme-Santos, Jesus & Serrano-Gonzalez, Javier, 2015. "Reducing computational effort in the calculation of annual energy produced in wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 656-665.
    10. Hou, Peng & Hu, Weihao & Chen, Cong & Soltani, Mohsen & Chen, Zhe, 2016. "Optimization of offshore wind farm layout in restricted zones," Energy, Elsevier, vol. 113(C), pages 487-496.
    11. Serrano González, Javier & Burgos Payán, Manuel & Santos, Jesús Manuel Riquelme & González-Longatt, Francisco, 2014. "A review and recent developments in the optimal wind-turbine micro-siting problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 133-144.
    12. Chen, Chao & Duffour, Philippe & Fromme, Paul & Hua, Xugang, 2021. "Numerically efficient fatigue life prediction of offshore wind turbines using aerodynamic decoupling," Renewable Energy, Elsevier, vol. 178(C), pages 1421-1434.
    13. Chen, Yisu & Wu, Di & Yu, Yuguo & Gao, Wei, 2021. "Do cyclone impacts really matter for the long-term performance of an offshore wind turbine?," Renewable Energy, Elsevier, vol. 178(C), pages 184-201.
    14. Parada, Leandro & Herrera, Carlos & Flores, Paulo & Parada, Victor, 2018. "Assessing the energy benefit of using a wind turbine micro-siting model," Renewable Energy, Elsevier, vol. 118(C), pages 591-601.
    15. Wang, Longyan & Tan, Andy C.C. & Cholette, Michael E. & Gu, Yuantong, 2017. "Optimization of wind farm layout with complex land divisions," Renewable Energy, Elsevier, vol. 105(C), pages 30-40.
    16. Gu, Huajie & Wang, Jun, 2013. "Irregular-shape wind farm micro-siting optimization," Energy, Elsevier, vol. 57(C), pages 535-544.
    17. Azlan, F. & Kurnia, J.C. & Tan, B.T. & Ismadi, M.-Z., 2021. "Review on optimisation methods of wind farm array under three classical wind condition problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Lam, H.F. & Peng, H.Y., 2017. "Development of a wake model for Darrieus-type straight-bladed vertical axis wind turbines and its application to micro-siting problems," Renewable Energy, Elsevier, vol. 114(PB), pages 830-842.
    19. Dhoot, Aditya & Antonini, Enrico G.A. & Romero, David A. & Amon, Cristina H., 2021. "Optimizing wind farms layouts for maximum energy production using probabilistic inference: Benchmarking reveals superior computational efficiency and scalability," Energy, Elsevier, vol. 223(C).
    20. Song, Mengxuan & Chen, Kai & Zhang, Xing & Wang, Jun, 2016. "Optimization of wind turbine micro-siting for reducing the sensitivity of power generation to wind direction," Renewable Energy, Elsevier, vol. 85(C), pages 57-65.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:168:y:2021:i:c:p:516-543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.