IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223022156.html
   My bibliography  Save this article

Effects evaluation of Fin layouts and configurations on discharging performance of double-pipe thermochemical energy storage reactor

Author

Listed:
  • Luo, Xinyi
  • Li, Wei
  • Zhang, Lianjie
  • Zeng, Min
  • Klemeš, Jirí Jaromír
  • Wang, Qiuwang

Abstract

Thermochemical energy storage (TCES) based on hydrated salts is gaining popularity because it can provide high storage capacity at low costs. It is critical to improving heat storage efficiency and capacity due to technical challenges such as low thermal conductivity of thermochemical materials (TCMs) and poor mass transfer. The reversible reaction of strontium bromide monohydrate (SrBr2·H2O) and water vapor forming strontium bromide hexahydrate (SrBr2·6H2O) for TCES is used in numerical simulation, aiming to investigate the discharging performance of a double-pipe closed TCES reactor considering the influences of fin layouts (radial and longitudinal fins) by evaluating several indicators such as the reaction time and outlet temperature. The results show that the use of fins can improve the exothermic process. The discharging time of the reactor with upward L-shaped fins is reduced by 8.6% for radial fins and by 8.9% for the reactor with four longitudinal fins. The addition of fins expands the heat transfer area and makes the hydration rate of TCM around fins significantly higher than other parts. The Taguchi method is adopted to optimize the structure parameters of case 7 as it has the highest heat transfer amount of heat transfer fluid (HTF), and the optimal combination (A (fin number) = 4, B (fin extension length) = 20 mm, C (fin thickness) = 2 mm) increases the peak value of average outlet temperature by 1.47% and the heat exchange efficiency by 4.7% compared with case 7.

Suggested Citation

  • Luo, Xinyi & Li, Wei & Zhang, Lianjie & Zeng, Min & Klemeš, Jirí Jaromír & Wang, Qiuwang, 2023. "Effects evaluation of Fin layouts and configurations on discharging performance of double-pipe thermochemical energy storage reactor," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223022156
    DOI: 10.1016/j.energy.2023.128821
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223022156
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128821?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Mengyi & Chen, Li & Zhou, Yuhao & Tao, Wen-Quan, 2022. "Numerical simulation of the calcium hydroxide/calcium oxide system dehydration reaction in a shell-tube reactor," Applied Energy, Elsevier, vol. 312(C).
    2. Stengler, Jana & Bürger, Inga & Linder, Marc, 2020. "Thermodynamic and kinetic investigations of the SrBr2 hydration and dehydration reactions for thermochemical energy storage and heat transformation," Applied Energy, Elsevier, vol. 277(C).
    3. Fopah-Lele, Armand & Rohde, Christian & Neumann, Karsten & Tietjen, Theo & Rönnebeck, Thomas & N'Tsoukpoe, Kokouvi Edem & Osterland, Thomas & Opel, Oliver & Ruck, Wolfgang K.L., 2016. "Lab-scale experiment of a closed thermochemical heat storage system including honeycomb heat exchanger," Energy, Elsevier, vol. 114(C), pages 225-238.
    4. Hamza Ayaz & Veerakumar Chinnasamy & Junhyeok Yong & Honghyun Cho, 2021. "Review of Technologies and Recent Advances in Low-Temperature Sorption Thermal Storage Systems," Energies, MDPI, vol. 14(19), pages 1-36, September.
    5. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2021. "Numerical analysis on the improved thermo-chemical behaviour of hierarchical energy materials as a cascaded thermal accumulator," Energy, Elsevier, vol. 232(C).
    6. N’Tsoukpoe, Kokouvi Edem & Schmidt, Thomas & Rammelberg, Holger Urs & Watts, Beatriz Amanda & Ruck, Wolfgang K.L., 2014. "A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage," Applied Energy, Elsevier, vol. 124(C), pages 1-16.
    7. Michel, Benoit & Neveu, Pierre & Mazet, Nathalie, 2014. "Comparison of closed and open thermochemical processes, for long-term thermal energy storage applications," Energy, Elsevier, vol. 72(C), pages 702-716.
    8. Stengler, Jana & Linder, Marc, 2020. "Thermal energy storage combined with a temperature boost: An underestimated feature of thermochemical systems," Applied Energy, Elsevier, vol. 262(C).
    9. Michel, Benoit & Mazet, Nathalie & Neveu, Pierre, 2014. "Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar energy: Global performance," Applied Energy, Elsevier, vol. 129(C), pages 177-186.
    10. Fopah Lele, Armand & Kuznik, Frédéric & Rammelberg, Holger U. & Schmidt, Thomas & Ruck, Wolfgang K.L., 2015. "Thermal decomposition kinetic of salt hydrates for heat storage systems," Applied Energy, Elsevier, vol. 154(C), pages 447-458.
    11. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    12. Cabeza, Luisa F. & de Gracia, Alvaro & Zsembinszki, Gabriel & Borri, Emiliano, 2021. "Perspectives on thermal energy storage research," Energy, Elsevier, vol. 231(C).
    13. Yu, N. & Wang, R.Z. & Wang, L.W., 2015. "Theoretical and experimental investigation of a closed sorption thermal storage prototype using LiCl/water," Energy, Elsevier, vol. 93(P2), pages 1523-1534.
    14. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2022. "Salt hydrate–based gas-solid thermochemical energy storage: Current progress, challenges, and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2022. "Salt hydrate–based gas-solid thermochemical energy storage: Current progress, challenges, and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Zhang, Yong & Hu, Mingke & Chen, Ziwei & Su, Yuehong & Riffat, Saffa, 2023. "Modelling analysis of a solar-driven thermochemical energy storage unit combined with heat recovery," Renewable Energy, Elsevier, vol. 206(C), pages 722-737.
    3. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2021. "Numerical analysis on the improved thermo-chemical behaviour of hierarchical energy materials as a cascaded thermal accumulator," Energy, Elsevier, vol. 232(C).
    4. Kant, K. & Pitchumani, R., 2022. "Advances and opportunities in thermochemical heat storage systems for buildings applications," Applied Energy, Elsevier, vol. 321(C).
    5. Zhang, Yong & Hu, Mingke & Chen, Ziwei & Su, Yuehong & Riffat, Saffa, 2024. "Exploring a novel tubular-type modular reactor for solar-driven thermochemical energy storage," Renewable Energy, Elsevier, vol. 221(C).
    6. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2020. "Development and characteristics analysis of salt-hydrate based composite sorbent for low-grade thermochemical energy storage," Renewable Energy, Elsevier, vol. 157(C), pages 920-940.
    7. Humbert, Gabriele & Ding, Yulong & Sciacovelli, Adriano, 2022. "Combined enhancement of thermal and chemical performance of closed thermochemical energy storage system by optimized tree-like heat exchanger structures," Applied Energy, Elsevier, vol. 311(C).
    8. Isye Hayatina & Amar Auckaili & Mohammed Farid, 2023. "Review on Salt Hydrate Thermochemical Heat Transformer," Energies, MDPI, vol. 16(12), pages 1-23, June.
    9. Gbenou, Tadagbe Roger Sylvanus & Fopah-Lele, Armand & Wang, Kejian, 2022. "Macroscopic and microscopic investigations of low-temperature thermochemical heat storage reactors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    10. Mehrabadi, Abbas & Crotet, Engie & Farid, Mohammed, 2018. "An innovative approach for storing low-grade thermal energy using liquid phase thermoreversible reaction," Applied Energy, Elsevier, vol. 222(C), pages 823-829.
    11. Mukherjee, Ankit & Pujari, Ankush Shankar & Shinde, Shraddha Nitin & Kashyap, Uddip & Kumar, Lalit & Subramaniam, Chandramouli & Saha, Sandip K., 2022. "Performance assessment of open thermochemical energy storage system for seasonal space heating in highly humid environment," Renewable Energy, Elsevier, vol. 201(P1), pages 204-223.
    12. Michel, Benoit & Mazet, Nathalie & Neveu, Pierre, 2016. "Experimental investigation of an open thermochemical process operating with a hydrate salt for thermal storage of solar energy: Local reactive bed evolution," Applied Energy, Elsevier, vol. 180(C), pages 234-244.
    13. Gaeini, M. & Rouws, A.L. & Salari, J.W.O. & Zondag, H.A. & Rindt, C.C.M., 2018. "Characterization of microencapsulated and impregnated porous host materials based on calcium chloride for thermochemical energy storage," Applied Energy, Elsevier, vol. 212(C), pages 1165-1177.
    14. Mikos-Nuszkiewicz, Natalia & Furmański, Piotr & Łapka, Piotr, 2023. "A mathematical model of charging and discharging processes in a thermochemical energy storage reactor using the hydrated potassium carbonate as a thermochemical material," Energy, Elsevier, vol. 263(PA).
    15. Mazur, Natalia & Blijlevens, Melian A.R. & Ruliaman, Rick & Fischer, Hartmut & Donkers, Pim & Meekes, Hugo & Vlieg, Elias & Adan, Olaf & Huinink, Henk, 2023. "Revisiting salt hydrate selection for domestic heat storage applications," Renewable Energy, Elsevier, vol. 218(C).
    16. Li, Wei & Markides, Christos N. & Zeng, Min & Peng, Jian, 2024. "4E evaluations of salt hydrate-based solar thermochemical heat transformer system used for domestic hot water production," Energy, Elsevier, vol. 286(C).
    17. Hui Yang & Chengcheng Wang & Lige Tong & Shaowu Yin & Li Wang & Yulong Ding, 2023. "Salt Hydrate Adsorption Material-Based Thermochemical Energy Storage for Space Heating Application: A Review," Energies, MDPI, vol. 16(6), pages 1-54, March.
    18. Li, Wei & Zhang, Lianjie & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2022. "Thermochemical energy conversion behaviour in the corrugated heat storage unit with porous metal support," Energy, Elsevier, vol. 259(C).
    19. Stengler, Jana & Bürger, Inga & Linder, Marc, 2020. "Thermodynamic and kinetic investigations of the SrBr2 hydration and dehydration reactions for thermochemical energy storage and heat transformation," Applied Energy, Elsevier, vol. 277(C).
    20. Nagel, Thomas & Beckert, Steffen & Lehmann, Christoph & Gläser, Roger & Kolditz, Olaf, 2016. "Multi-physical continuum models of thermochemical heat storage and transformation in porous media and powder beds—A review," Applied Energy, Elsevier, vol. 178(C), pages 323-345.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223022156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.