IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics036054422302145x.html
   My bibliography  Save this article

Demand response via optimal pre-cooling combined with temperature reset strategy for air conditioning system: A case study of office building

Author

Listed:
  • Wang, Jiewei
  • Wei, Ziqing
  • Zhu, Yikang
  • Zheng, Chunyuan
  • Li, Bin
  • Zhai, Xiaoqiang

Abstract

Demand response (DR) through air conditioning (AC) systems in buildings is a promising way to balance the power grid. However, the majority of existing DR strategies are rule-based. The other ones are model-based but generally have adopted oversimplified AC system models. Consequently, the effect of model-based optimal control cannot be evaluated properly. To address these limitations, a co-simulation framework is developed to minimize power consumption and electricity costs by adopting both pre-cooling and temperature reset strategies. The co-simulation framework combines an EnergyPlus model that is calibrated by measured data and the genetic algorithm through Functional Mock-up Unit socket. Both time-of-use electricity prices and the constraints of thermal comfort are considered in the optimization problem. A real office building with a variable refrigerant flow (VRF) system is used to test the co-simulation framework. Compared with rule-based strategies, the power consumption of the VRF system following the optimal control strategy during the DR period is reduced by 80.12%, 74.70% and 55.60%, and the daily electricity cost is reduced by 14.98%, 12.11% and 8.35%, respectively. The quantitative analysis also reveals that 37.96% of the cold energy stored by the envelope in the pre-cooling period is released into the air during the DR period.

Suggested Citation

  • Wang, Jiewei & Wei, Ziqing & Zhu, Yikang & Zheng, Chunyuan & Li, Bin & Zhai, Xiaoqiang, 2023. "Demand response via optimal pre-cooling combined with temperature reset strategy for air conditioning system: A case study of office building," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s036054422302145x
    DOI: 10.1016/j.energy.2023.128751
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422302145X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128751?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ran, Fengming & Gao, Dian-ce & Zhang, Xu & Chen, Shuyue, 2020. "A virtual sensor based self-adjusting control for HVAC fast demand response in commercial buildings towards smart grid applications," Applied Energy, Elsevier, vol. 269(C).
    2. Wei, Ziqing & Ren, Fukang & Zhu, Yikang & Yue, Bao & Ding, Yunxiao & Zheng, Chunyuan & Li, Bin & Zhai, Xiaoqiang, 2022. "Data-driven two-step identification of building thermal characteristics: A case study of office building," Applied Energy, Elsevier, vol. 326(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morovat, Navid & Athienitis, Andreas K. & Candanedo, José Agustín & Nouanegue, Hervé Frank, 2024. "Heuristic model predictive control implementation to activate energy flexibility in a fully electric school building," Energy, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu, 2023. "Globally optimal control of hybrid chilled water plants integrated with small-scale thermal energy storage for energy-efficient operation," Energy, Elsevier, vol. 262(PA).
    2. Koo, Jabeom & Yoon, Sungmin, 2022. "In-situ sensor virtualization and calibration in building systems," Applied Energy, Elsevier, vol. 325(C).
    3. Zhang, Xu & Sun, Yongjun & Gao, Dian-ce & Zou, Wenke & Fu, Jianping & Ma, Xiaowen, 2022. "Similarity-based grouping method for evaluation and optimization of dataset structure in machine-learning based short-term building cooling load prediction without measurable occupancy information," Applied Energy, Elsevier, vol. 327(C).
    4. Lakshmanan, Venkatachalam & Sæle, Hanne & Degefa, Merkebu Zenebe, 2021. "Electric water heater flexibility potential and activation impact in system operator perspective – Norwegian scenario case study," Energy, Elsevier, vol. 236(C).
    5. Gao, Cheng & Wang, Dan & Sun, Yuying & Wang, Wei & Zhang, Xiuyu, 2023. "Optimal load dispatch of multi-source looped district cooling systems based on energy and hydraulic performances," Energy, Elsevier, vol. 274(C).
    6. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Cui, Zhitao & You, Zhiqiang & Ma, Xiaowen, 2023. "Robust enhancement of chiller sequencing control for tolerating sensor measurement uncertainties through controlling small-scale thermal energy storage," Energy, Elsevier, vol. 280(C).
    7. Lamnatou, Chr. & Chemisana, D. & Cristofari, C., 2022. "Smart grids and smart technologies in relation to photovoltaics, storage systems, buildings and the environment," Renewable Energy, Elsevier, vol. 185(C), pages 1376-1391.
    8. Xiao, Jucheng & He, Guangyu & Fan, Shuai & Zhang, Siyuan & Wu, Qing & Li, Zuyi, 2020. "Decentralized transfer of contingency reserve: Framework and methodology," Applied Energy, Elsevier, vol. 278(C).
    9. Hong, Yejin & Yoon, Sungmin & Kim, Yong-Shik & Jang, Hyangin, 2021. "System-level virtual sensing method in building energy systems using autoencoder: Under the limited sensors and operational datasets," Applied Energy, Elsevier, vol. 301(C).
    10. Cui, Xueyuan & Liu, Shu & Ruan, Guangchun & Wang, Yi, 2024. "Data-driven aggregation of thermal dynamics within building virtual power plants," Applied Energy, Elsevier, vol. 353(PB).
    11. Hong, Yejin & Yoon, Sungmin & Choi, Sebin, 2023. "Operational signature-based symbolic hierarchical clustering for building energy, operation, and efficiency towards carbon neutrality," Energy, Elsevier, vol. 265(C).
    12. Davide Deltetto & Davide Coraci & Giuseppe Pinto & Marco Savino Piscitelli & Alfonso Capozzoli, 2021. "Exploring the Potentialities of Deep Reinforcement Learning for Incentive-Based Demand Response in a Cluster of Small Commercial Buildings," Energies, MDPI, vol. 14(10), pages 1-25, May.
    13. Feng Xu & Kei Sakurai & Yuki Sato & Yuka Sakai & Shunsuke Sabu & Hiroaki Kanayama & Daisuke Satou & Yasuki Kansha, 2023. "Soft-Sensor Modeling of Temperature Variation in a Room under Cooling Conditions," Energies, MDPI, vol. 16(6), pages 1-13, March.
    14. Kim, Ryunhee & Hong, Yejin & Choi, Youngwoong & Yoon, Sungmin, 2021. "System-level fouling detection of district heating substations using virtual-sensor-assisted building automation system," Energy, Elsevier, vol. 227(C).
    15. Sun, Shaobo & Shan, Kui & Wang, Shengwei, 2022. "An online robust sequencing control strategy for identical chillers using a probabilistic approach concerning flow measurement uncertainties," Applied Energy, Elsevier, vol. 317(C).
    16. Li, Guannan & Chen, Liang & Liu, Jiangyan & Fang, Xi, 2023. "Comparative study on deep transfer learning strategies for cross-system and cross-operation-condition building energy systems fault diagnosis," Energy, Elsevier, vol. 263(PD).
    17. Yue, Bao & Wei, Ziqing & Zheng, Chunyuan & Ding, Yunxiao & Li, Bin & Li, Dongdong & Liang, Xingang & Zhai, Xiaoqiang, 2023. "Power consumption prediction of variable refrigerant flow system through data-physics hybrid approach: An online prediction test in office building," Energy, Elsevier, vol. 278(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s036054422302145x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.