IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v301y2021ics0306261921008473.html
   My bibliography  Save this article

System-level virtual sensing method in building energy systems using autoencoder: Under the limited sensors and operational datasets

Author

Listed:
  • Hong, Yejin
  • Yoon, Sungmin
  • Kim, Yong-Shik
  • Jang, Hyangin

Abstract

Sensing networks and their environments are essential in intelligent building systems because of their increasing dependency on operational data. Virtual sensing technology has been applied in building energy systems to provide the more reliable and informative sensing environments. However, conventional virtual sensors still have structural and practical limitations under the physical sensor absences and limited datasets. Existing virtual sensors are separately developed by modeling multiple input variables and a single target (Xs to Y), which is the variable-level virtual sensor (VLVS); therefore, these virtual sensors cannot benefit by either using their target variable (Y) or by considering other virtual sensors when developing the models. This can result in insufficient accuracy, particularly in the limited sensors. Herein, to overcome these limitations, a novel virtual sensing framework, system-level virtual sensing (SLVS), is proposed for building energy systems using an autoencoder. Two strategies are also proposed. The autoencoder-based SLVS with the two strategies was applied in a real operational district heating system. The first strategy showed an improved accuracy using a new assistance virtual sensor, which is derived by additional information and knowledge regarding system design, control, and devices. It could also overcome the training data dependency in the limited datasets. The second strategy provided a replacement function for the SLVS specialized for backup and a calibration effect for the existing VLVS. Thus, the results showed that the suggested SLVS can achieve multifunctional high-accuracy virtual sensing; the accuracies of 99.89%, 99.68%, and 97.91% were shown respectively for temperatures, pressures, and control signals.

Suggested Citation

  • Hong, Yejin & Yoon, Sungmin & Kim, Yong-Shik & Jang, Hyangin, 2021. "System-level virtual sensing method in building energy systems using autoencoder: Under the limited sensors and operational datasets," Applied Energy, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:appene:v:301:y:2021:i:c:s0306261921008473
    DOI: 10.1016/j.apenergy.2021.117458
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921008473
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117458?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xue, Puning & Zhou, Zhigang & Fang, Xiumu & Chen, Xin & Liu, Lin & Liu, Yaowen & Liu, Jing, 2017. "Fault detection and operation optimization in district heating substations based on data mining techniques," Applied Energy, Elsevier, vol. 205(C), pages 926-940.
    2. Yoon, Sungmin & Yu, Yuebin, 2018. "Hidden factors and handling strategies on virtual in-situ sensor calibration in building energy systems: Prior information and cancellation effect," Applied Energy, Elsevier, vol. 212(C), pages 1069-1082.
    3. Zhang, Rongpeng & Hong, Tianzhen, 2017. "Modeling of HVAC operational faults in building performance simulation," Applied Energy, Elsevier, vol. 202(C), pages 178-188.
    4. Ran, Fengming & Gao, Dian-ce & Zhang, Xu & Chen, Shuyue, 2020. "A virtual sensor based self-adjusting control for HVAC fast demand response in commercial buildings towards smart grid applications," Applied Energy, Elsevier, vol. 269(C).
    5. Hu, R.L. & Granderson, J. & Auslander, D.M. & Agogino, A., 2019. "Design of machine learning models with domain experts for automated sensor selection for energy fault detection," Applied Energy, Elsevier, vol. 235(C), pages 117-128.
    6. Chen, Yixing & Deng, Zhang & Hong, Tianzhen, 2020. "Automatic and rapid calibration of urban building energy models by learning from energy performance database," Applied Energy, Elsevier, vol. 277(C).
    7. Zhan, Sicheng & Liu, Zhaoru & Chong, Adrian & Yan, Da, 2020. "Building categorization revisited: A clustering-based approach to using smart meter data for building energy benchmarking," Applied Energy, Elsevier, vol. 269(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong, Yejin & Yoon, Sungmin & Choi, Sebin, 2023. "Operational signature-based symbolic hierarchical clustering for building energy, operation, and efficiency towards carbon neutrality," Energy, Elsevier, vol. 265(C).
    2. Xie, Jiahang & Yang, Rufan & Gooi, Hoay Beng & Nguyen, Hung Dinh, 2023. "PID-based CNN-LSTM for accuracy-boosted virtual sensor in battery thermal management system," Applied Energy, Elsevier, vol. 331(C).
    3. Koo, Jabeom & Yoon, Sungmin, 2022. "In-situ sensor virtualization and calibration in building systems," Applied Energy, Elsevier, vol. 325(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koo, Jabeom & Yoon, Sungmin, 2022. "In-situ sensor virtualization and calibration in building systems," Applied Energy, Elsevier, vol. 325(C).
    2. Kim, Ryunhee & Hong, Yejin & Choi, Youngwoong & Yoon, Sungmin, 2021. "System-level fouling detection of district heating substations using virtual-sensor-assisted building automation system," Energy, Elsevier, vol. 227(C).
    3. Hyo-Jun Kim & Young-Hum Cho, 2021. "Optimal Control Method of Variable Air Volume Terminal Unit System," Energies, MDPI, vol. 14(22), pages 1-15, November.
    4. Hong, Yejin & Yoon, Sungmin & Choi, Sebin, 2023. "Operational signature-based symbolic hierarchical clustering for building energy, operation, and efficiency towards carbon neutrality," Energy, Elsevier, vol. 265(C).
    5. Li, Tingting & Zhou, Yangze & Zhao, Yang & Zhang, Chaobo & Zhang, Xuejun, 2022. "A hierarchical object oriented Bayesian network-based fault diagnosis method for building energy systems," Applied Energy, Elsevier, vol. 306(PB).
    6. Sun, Chunhua & Zhang, Haixiang & Cao, Shanshan & Xia, Guoqiang & Zhong, Jian & Wu, Xiangdong, 2023. "A hierarchical classifying and two-step training strategy for detection and diagnosis of anormal temperature in district heating system," Applied Energy, Elsevier, vol. 349(C).
    7. Hong, Yejin & Yoon, Sungmin, 2022. "Holistic Operational Signatures for an energy-efficient district heating substation in buildings," Energy, Elsevier, vol. 250(C).
    8. Lu, Xing & O'Neill, Zheng & Li, Yanfei & Niu, Fuxin, 2020. "A novel simulation-based framework for sensor error impact analysis in smart building systems: A case study for a demand-controlled ventilation system," Applied Energy, Elsevier, vol. 263(C).
    9. Fan, Cheng & Sun, Yongjun & Shan, Kui & Xiao, Fu & Wang, Jiayuan, 2018. "Discovering gradual patterns in building operations for improving building energy efficiency," Applied Energy, Elsevier, vol. 224(C), pages 116-123.
    10. Zhao, Yang & Li, Tingting & Zhang, Xuejun & Zhang, Chaobo, 2019. "Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 85-101.
    11. Antonio Rosato & Francesco Guarino & Sergio Sibilio & Evgueniy Entchev & Massimiliano Masullo & Luigi Maffei, 2021. "Healthy and Faulty Experimental Performance of a Typical HVAC System under Italian Climatic Conditions: Artificial Neural Network-Based Model and Fault Impact Assessment," Energies, MDPI, vol. 14(17), pages 1-41, August.
    12. Shen, Yuxuan & Pan, Yue, 2023. "BIM-supported automatic energy performance analysis for green building design using explainable machine learning and multi-objective optimization," Applied Energy, Elsevier, vol. 333(C).
    13. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    14. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    15. Zhong, Fangliang & Calautit, John Kaiser & Wu, Yupeng, 2022. "Assessment of HVAC system operational fault impacts and multiple faults interactions under climate change," Energy, Elsevier, vol. 258(C).
    16. Muhammad Umair Safder & Mohammad J. Sanjari & Ameer Hamza & Rasoul Garmabdari & Md. Alamgir Hossain & Junwei Lu, 2023. "Enhancing Microgrid Stability and Energy Management: Techniques, Challenges, and Future Directions," Energies, MDPI, vol. 16(18), pages 1-28, September.
    17. Lu, Yakai & Tian, Zhe & Zhou, Ruoyu & Liu, Wenjing, 2021. "A general transfer learning-based framework for thermal load prediction in regional energy system," Energy, Elsevier, vol. 217(C).
    18. Roth, Jonathan & Martin, Amory & Miller, Clayton & Jain, Rishee K., 2020. "SynCity: Using open data to create a synthetic city of hourly building energy estimates by integrating data-driven and physics-based methods," Applied Energy, Elsevier, vol. 280(C).
    19. Sara Månsson & Kristin Davidsson & Patrick Lauenburg & Marcus Thern, 2018. "Automated Statistical Methods for Fault Detection in District Heating Customer Installations," Energies, MDPI, vol. 12(1), pages 1-18, December.
    20. Antonio Rosato & Francesco Guarino & Mohammad El Youssef & Alfonso Capozzoli & Massimiliano Masullo & Luigi Maffei, 2022. "Faulty Operation of Coils’ and Humidifier Valves in a Typical Air-Handling Unit: Experimental Impact Assessment of Indoor Comfort and Patterns of Operating Parameters under Mediterranean Climatic Cond," Energies, MDPI, vol. 15(18), pages 1-38, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:301:y:2021:i:c:s0306261921008473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.