IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v290y2021ics0306261921003020.html
   My bibliography  Save this article

Superior thermal energy storage performance of NaCl-SWCNT composite phase change materials: A molecular dynamics approach

Author

Listed:
  • Yu, Yinsheng
  • Zhao, Chenyang
  • Tao, Yubing
  • Chen, Xi
  • He, Ya-Ling

Abstract

Molten salts are attractive candidate materials used for effective thermal energy transfer and storage, which can be applied in the concentrating solar power (CSP) system at high temperatures for efficient and continuous solar energy utilization. In this paper, in order to improve the thermal performance of NaCl based molten salt, the NaCl and single walled carbon nanotubes (NaCl-SWCNT) based composite phase change materials (CPCM) were proposed and designed by composition design strategy of materials. The thermal properties and the microstructure of CPCM systems were investigated by means of molecular dynamics (MD) simulation at nanoscale. The thermal properties including density, melting point, self-diffusion coefficient, thermal conductivity, melting enthalpy and specific heat capacity were predicted, the simulation results are in good agreement with the available experimental data, and the mechanism of desirable thermal performance enhancement was revealed from the microscopic point of view. It was found that the addition of SWCNT can effectively reduce the melting point of molten salts, so as to control the working temperature range of molten salts. With the increase of the SWCNT mass fraction, the thermal conductivity and specific heat capacity increase significantly with the maximum enhancement of 38.59% and 5.87%, respectively, but the melting enthalpy decreases by 36.37%. The above phenomena can be attributed to the variation of atomic energy from nanoscale. This study is expected to provide possible guidance on the design and application of molten salts based PCMs for thermal energy storage at high temperatures.

Suggested Citation

  • Yu, Yinsheng & Zhao, Chenyang & Tao, Yubing & Chen, Xi & He, Ya-Ling, 2021. "Superior thermal energy storage performance of NaCl-SWCNT composite phase change materials: A molecular dynamics approach," Applied Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:appene:v:290:y:2021:i:c:s0306261921003020
    DOI: 10.1016/j.apenergy.2021.116799
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921003020
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116799?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Min & Mu, Boyuan, 2019. "Effect of different dimensional carbon materials on the properties and application of phase change materials: A review," Applied Energy, Elsevier, vol. 242(C), pages 695-715.
    2. Zhu, Xiao & Han, Liang & Lu, Yunfeng & Wei, Fei & Jia, Xilai, 2019. "Geometry-induced thermal storage enhancement of shape-stabilized phase change materials based on oriented carbon nanotubes," Applied Energy, Elsevier, vol. 254(C).
    3. He, Ya-Ling & Qiu, Yu & Wang, Kun & Yuan, Fan & Wang, Wen-Qi & Li, Ming-Jia & Guo, Jia-Qi, 2020. "Perspective of concentrating solar power," Energy, Elsevier, vol. 198(C).
    4. Robert L. Fares & Michael E. Webber, 2017. "The impacts of storing solar energy in the home to reduce reliance on the utility," Nature Energy, Nature, vol. 2(2), pages 1-10, February.
    5. Tao, Y.B. & He, Ya-Ling, 2018. "A review of phase change material and performance enhancement method for latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 245-259.
    6. Tian, Heqing & Wang, Weilong & Ding, Jing & Wei, Xiaolan & Song, Ming & Yang, Jianping, 2015. "Thermal conductivities and characteristics of ternary eutectic chloride/expanded graphite thermal energy storage composites," Applied Energy, Elsevier, vol. 148(C), pages 87-92.
    7. Yasinskiy, Andrey & Navas, Javier & Aguilar, Teresa & Alcántara, Rodrigo & Gallardo, Juan Jesús & Sánchez-Coronilla, Antonio & Martín, Elisa I. & De Los Santos, Desireé & Fernández-Lorenzo, Concha, 2018. "Dramatically enhanced thermal properties for TiO2-based nanofluids for being used as heat transfer fluids in concentrating solar power plants," Renewable Energy, Elsevier, vol. 119(C), pages 809-819.
    8. Gómez-Villarejo, Roberto & Martín, Elisa I. & Navas, Javier & Sánchez-Coronilla, Antonio & Aguilar, Teresa & Gallardo, Juan Jesús & Alcántara, Rodrigo & De los Santos, Desiré & Carrillo-Berdugo, Iván , 2017. "Ag-based nanofluidic system to enhance heat transfer fluids for concentrating solar power: Nano-level insights," Applied Energy, Elsevier, vol. 194(C), pages 19-29.
    9. Wang, Wen-Qi & Qiu, Yu & Li, Ming-Jia & He, Ya-Ling & Cheng, Ze-Dong, 2020. "Coupled optical and thermal performance of a fin-like molten salt receiver for the next-generation solar power tower," Applied Energy, Elsevier, vol. 272(C).
    10. Du, Lichan & Ding, Jing & Tian, Heqing & Wang, Weilong & Wei, Xiaolan & Song, Ming, 2017. "Thermal properties and thermal stability of the ternary eutectic salt NaCl-CaCl2-MgCl2 used in high-temperature thermal energy storage process," Applied Energy, Elsevier, vol. 204(C), pages 1225-1230.
    11. Yuan, Fan & Li, Ming-Jia & Qiu, Yu & Ma, Zhao & Li, Meng-Jie, 2019. "Specific heat capacity improvement of molten salt for solar energy applications using charged single-walled carbon nanotubes," Applied Energy, Elsevier, vol. 250(C), pages 1481-1490.
    12. Han, Dongmei & Guene Lougou, Bachirou & Xu, Yantao & Shuai, Yong & Huang, Xing, 2020. "Thermal properties characterization of chloride salts/nanoparticles composite phase change material for high-temperature thermal energy storage," Applied Energy, Elsevier, vol. 264(C).
    13. Wu, Ming & Xu, Chao & He, Ya-Ling, 2014. "Dynamic thermal performance analysis of a molten-salt packed-bed thermal energy storage system using PCM capsules," Applied Energy, Elsevier, vol. 121(C), pages 184-195.
    14. Li, Ming-Jia & Jin, Bo & Ma, Zhao & Yuan, Fan, 2018. "Experimental and numerical study on the performance of a new high-temperature packed-bed thermal energy storage system with macroencapsulation of molten salt phase change material," Applied Energy, Elsevier, vol. 221(C), pages 1-15.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yilin & Cui, Xin & Yan, Weichao & Wang, Jiawei & Su, Jincai & Jin, Liwen, 2022. "A molecular level based parametric study of transport behavior in different polymer composite membranes for water vapor separation," Applied Energy, Elsevier, vol. 326(C).
    2. Luo, Qingyang & Liu, Xianglei & Xu, Qiao & Tian, Yang & Yao, Haichen & Wang, Jianguo & Lv, Shushan & Dang, Chunzhuo & Xuan, Yimin, 2023. "Ceramic nanoparticles enhancement of latent heat thermal energy storage properties for LiNO3/NaCl: Evaluation from material to system level," Applied Energy, Elsevier, vol. 331(C).
    3. Varbanov, Petar Sabev & Wang, Bohong & Ocłoń, Paweł & Radziszewska-Zielina, Elżbieta & Ma, Ting & Klemeš, Jiří Jaromír & Jia, Xuexiu, 2023. "Efficiency measures for energy supply and use aiming for a clean circular economy," Energy, Elsevier, vol. 283(C).
    4. Huang, Zizhou & Li, Qing & Qiu, Yu, 2024. "Enhancements in thermal properties of binary alkali chloride salt by Al2O3 nanoparticles for thermal energy storage," Energy, Elsevier, vol. 301(C).
    5. Liu, Jinjin & Xiao, Xin, 2023. "Molecular dynamics investigation of thermo-physical properties of molten salt with nanoparticles for solar energy application," Energy, Elsevier, vol. 282(C).
    6. Xian, Lei & Chen, Lei & Tian, Heqing & Tao, Wen-Quan, 2022. "Enhanced thermal energy storage performance of molten salt for the next generation concentrated solar power plants by SiO2 nanoparticles: A molecular dynamics study," Applied Energy, Elsevier, vol. 323(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Y. & Zhao, C.Y. & Markides, C.N. & Wang, H. & Li, W., 2020. "Medium- and high-temperature latent and thermochemical heat storage using metals and metallic compounds as heat storage media: A technical review," Applied Energy, Elsevier, vol. 280(C).
    2. Ma, Zhao & Li, Ming-Jia & Zhang, K. Max & Yuan, Fan, 2021. "Novel designs of hybrid thermal energy storage system and operation strategies for concentrated solar power plant," Energy, Elsevier, vol. 216(C).
    3. Wang, Wen-Qi & Li, Ming-Jia & Cheng, Ze-Dong & Li, Dong & Liu, Zhan-Bin, 2021. "Coupled optical-thermal-stress characteristics of a multi-tube external molten salt receiver for the next generation concentrating solar power," Energy, Elsevier, vol. 233(C).
    4. Wang, Wei & He, Xibo & Hou, Yicheng & Qiu, Jun & Han, Dongmei & Shuai, Yong, 2021. "Thermal performance analysis of packed-bed thermal energy storage with radial gradient arrangement for phase change materials," Renewable Energy, Elsevier, vol. 173(C), pages 768-780.
    5. Wang, Wen-Qi & Li, Ming-Jia & Jiang, Rui & Cheng, Ze-Dong & He, Ya-Ling, 2022. "A comparison between lumped parameter method and computational fluid dynamics method for steady and transient optical-thermal characteristics of the molten salt receiver in solar power tower," Energy, Elsevier, vol. 245(C).
    6. He, Ya-Ling & Qiu, Yu & Wang, Kun & Yuan, Fan & Wang, Wen-Qi & Li, Ming-Jia & Guo, Jia-Qi, 2020. "Perspective of concentrating solar power," Energy, Elsevier, vol. 198(C).
    7. Qiu, Yu & Xu, Yucong & Li, Qing & Wang, Jikang & Wang, Qiliang & Liu, Bin, 2021. "Efficiency enhancement of a solar trough collector by combining solar and hot mirrors," Applied Energy, Elsevier, vol. 299(C).
    8. Zhao, C.Y. & Tao, Y.B. & Yu, Y.S., 2022. "Thermal conductivity enhancement of phase change material with charged nanoparticle: A molecular dynamics simulation," Energy, Elsevier, vol. 242(C).
    9. Li, Chuan & Li, Qi & Ding, Yulong, 2019. "Investigation on the thermal performance of a high temperature packed bed thermal energy storage system containing carbonate salt based composite phase change materials," Applied Energy, Elsevier, vol. 247(C), pages 374-388.
    10. Khor, J.O. & Sze, J.Y. & Li, Y. & Romagnoli, A., 2020. "Overcharging of a cascaded packed bed thermal energy storage: Effects and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    11. Wang, Wen-Qi & Li, Ming-Jia & Jiang, Rui & Hu, Yi-Huang & He, Ya-Ling, 2022. "Receiver with light-trapping nanostructured coating: A possible way to achieve high-efficiency solar thermal conversion for the next-generation concentrating solar power," Renewable Energy, Elsevier, vol. 185(C), pages 159-171.
    12. Wu, Chunlei & Wang, Qing & Wang, Xinmin & Sun, Shipeng & Wang, Yuqi & Wu, Shuang & Bai, Jingru & Sheng, Hongyu & Zhang, Jinghui, 2024. "Al2O3 nanoparticles integration for comprehensive enhancement of eutectic salt thermal performance: Experimental design, molecular dynamics calculations, and system simulation studies," Energy, Elsevier, vol. 292(C).
    13. Ma, Teng & Li, Ming-Jia & Xu, Hang, 2024. "Thermal energy storage capacity configuration and energy distribution scheme for a 1000MWe S–CO2 coal-fired power plant to realize high-efficiency full-load adjustability," Energy, Elsevier, vol. 294(C).
    14. José Pereira & Ana Moita & António Moreira, 2023. "An Overview of the Molten Salt Nanofluids as Thermal Energy Storage Media," Energies, MDPI, vol. 16(4), pages 1-51, February.
    15. Wang, Qiliang & Li, Guiqiang & Cao, Jingyu & Hu, Mingke & Pei, Gang & Yang, Hongxing, 2022. "An analytical study on optimal spectral characters of solar absorbing coating and thermal performance potential of solar power tower," Renewable Energy, Elsevier, vol. 200(C), pages 1300-1315.
    16. Qiu, Yu & Zhang, Yuanting & Li, Qing & Xu, Yucong & Wen, Zhe-Xi, 2020. "A novel parabolic trough receiver enhanced by integrating a transparent aerogel and wing-like mirrors," Applied Energy, Elsevier, vol. 279(C).
    17. Lin, Yaxue & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials," Energy, Elsevier, vol. 165(PA), pages 685-708.
    18. Yuan, Fan & Li, Ming-Jia & Qiu, Yu & Ma, Zhao & Li, Meng-Jie, 2019. "Specific heat capacity improvement of molten salt for solar energy applications using charged single-walled carbon nanotubes," Applied Energy, Elsevier, vol. 250(C), pages 1481-1490.
    19. Ahmad, Abdalqader & Anagnostopoulos, Argyrios & Navarro, M. Elena & Maksum, Yelaman & Sharma, Shivangi & Ding, Yulong, 2024. "A comprehensive material and experimental investigation of a packed bed latent heat storage system based on waste foundry sand," Energy, Elsevier, vol. 294(C).
    20. Gómez-Villarejo, Roberto & Martín, Elisa I. & Sánchez-Coronilla, Antonio & Aguilar, Teresa & Gallardo, Juan Jesús & Martínez-Merino, Paloma & Carrillo-Berdugo, Iván & Alcántara, Rodrigo & Fernández-Lo, 2018. "Towards the improvement of the global efficiency of concentrating solar power plants by using Pt-based nanofluids: The internal molecular structure effect," Applied Energy, Elsevier, vol. 228(C), pages 2262-2274.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:290:y:2021:i:c:s0306261921003020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.