IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p1080-d1345029.html
   My bibliography  Save this article

Effect of Morphological Characteristics of Aggregates on Thermal Properties of Molten Salt Nanofluids

Author

Listed:
  • Weichao Zhang

    (State Grid Energy Hefeng Coal Power Co., Ltd., Tacheng 834700, China)

  • Chaoyang Zhu

    (State Grid Energy Hefeng Coal Power Co., Ltd., Tacheng 834700, China)

  • Shuanjun Chen

    (State Grid Energy Hefeng Coal Power Co., Ltd., Tacheng 834700, China)

  • Shixing Wang

    (State Grid Energy Hefeng Coal Power Co., Ltd., Tacheng 834700, China)

  • Zhaoshuo Jing

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
    Key Laboratory of Power Station Energy Transfer Conversion and System, North China Electric Power University, Ministry of Education, Beijing 102206, China)

  • Liu Cui

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
    Key Laboratory of Power Station Energy Transfer Conversion and System, North China Electric Power University, Ministry of Education, Beijing 102206, China)

Abstract

Molten salt-based nanofluid is a thermal storage and heat transfer medium for concentrated solar thermal power plants formed by adding nanoparticles to molten salt, which can enhance the thermal performance of molten salt. However, the nanoparticles tend to aggregate in nanofluids, causing changes in thermal properties. In this work, molecular dynamics simulations were used to study the effect of morphological characteristics of aggregates on the thermal conductivity and specific heat capacity of molten salt-based nanofluids. The results show that the aggregated nanoparticles cause a greater increase in thermal conductivity and specific heat capacity than dispersed nanoparticles. Additionally, the increase in fractal dimension leads to thermal conductivity reduction, while there is no clear correlation between the fractal dimension and specific heat capacity. New insights into the thermal properties of aggregated nanofluids are provided by analyzing the contribution of material components, heat flux fluctuation modes, and energy compositions. It is found that the thermal conductivity of aggregated nanofluids is mainly dominated by the base liquid and collision term. However, the specific heat is not related to the variation in the contribution of different energy compositions. Moreover, compared to the dispersed nanofluid, the increased specific heat capacity of aggregated nanofluids is attributed to the thicker semi-solid layer. This study provides guidance for the design and control of the thermal properties of molten salt-based nanofluids.

Suggested Citation

  • Weichao Zhang & Chaoyang Zhu & Shuanjun Chen & Shixing Wang & Zhaoshuo Jing & Liu Cui, 2024. "Effect of Morphological Characteristics of Aggregates on Thermal Properties of Molten Salt Nanofluids," Energies, MDPI, vol. 17(5), pages 1-11, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1080-:d:1345029
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/1080/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/1080/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pereira da Cunha, Jose & Eames, Philip, 2016. "Thermal energy storage for low and medium temperature applications using phase change materials – A review," Applied Energy, Elsevier, vol. 177(C), pages 227-238.
    2. Awad, Afrah & Navarro, Helena & Ding, Yulong & Wen, Dongsheng, 2018. "Thermal-physical properties of nanoparticle-seeded nitrate molten salts," Renewable Energy, Elsevier, vol. 120(C), pages 275-288.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    2. Lukas Hegner & Stefan Krimmel & Rebecca Ravotti & Dominic Festini & Jörg Worlitschek & Anastasia Stamatiou, 2021. "Experimental Feasibility Study of a Direct Contact Latent Heat Storage Using an Ester as a Bio-Based Storage Material," Energies, MDPI, vol. 14(2), pages 1-26, January.
    3. Mohammad, Mehedi Bin & Brooks, Geoffrey Alan & Rhamdhani, M. Akbar, 2017. "Thermal analysis of molten ternary lithium-sodium-potassium nitrates," Renewable Energy, Elsevier, vol. 104(C), pages 76-87.
    4. Yang, Haiyue & Wang, Yazhou & Yu, Qianqian & Cao, Guoliang & Yang, Rue & Ke, Jiaona & Di, Xin & Liu, Feng & Zhang, Wenbo & Wang, Chengyu, 2018. "Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage," Applied Energy, Elsevier, vol. 212(C), pages 455-464.
    5. Shahsavar, Amin & Al-Rashed, Abdullah A.A.A. & Entezari, Sajad & Sardari, Pouyan Talebizadeh, 2019. "Melting and solidification characteristics of a double-pipe latent heat storage system with sinusoidal wavy channels embedded in a porous medium," Energy, Elsevier, vol. 171(C), pages 751-769.
    6. Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
    7. Englmair, Gerald & Moser, Christoph & Furbo, Simon & Dannemand, Mark & Fan, Jianhua, 2018. "Design and functionality of a segmented heat-storage prototype utilizing stable supercooling of sodium acetate trihydrate in a solar heating system," Applied Energy, Elsevier, vol. 221(C), pages 522-534.
    8. Yu, Xiaoli & Li, Zhi & Lu, Yiji & Huang, Rui & Roskilly, Anthony Paul, 2019. "Investigation of organic Rankine cycle integrated with double latent thermal energy storage for engine waste heat recovery," Energy, Elsevier, vol. 170(C), pages 1098-1112.
    9. Biesuz, Mattia & Valentini, Francesco & Bortolotti, Mauro & Zambotti, Andrea & Cestari, Francesca & Bruni, Angela & Sglavo, Vincenzo M. & Sorarù, Gian D. & Dorigato, Andrea & Pegoretti, Alessandro, 2021. "Biogenic architectures for green, cheap, and efficient thermal energy storage and management," Renewable Energy, Elsevier, vol. 178(C), pages 96-107.
    10. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
    11. Giovanni Salvatore Sau & Valerio Tripi & Anna Chiara Tizzoni & Raffaele Liberatore & Emiliana Mansi & Annarita Spadoni & Natale Corsaro & Mauro Capocelli & Tiziano Delise & Anna Della Libera, 2021. "High-Temperature Chloride-Carbonate Phase Change Material: Thermal Performances and Modelling of a Packed Bed Storage System for Concentrating Solar Power Plants," Energies, MDPI, vol. 14(17), pages 1-17, August.
    12. Ur Rehman, Ata & Zhao, Tianyu & Shah, Muhammad Zahir & Khan, Yaqoob & Hayat, Asif & Dang, Changwei & Zheng, Maosheng & Yun, Sining, 2023. "Nanoengineering of MgSO4 nanohybrid on MXene substrate for efficient thermochemical heat storage material," Applied Energy, Elsevier, vol. 332(C).
    13. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    14. Liu, Jinjin & Xiao, Xin, 2023. "Molecular dynamics investigation of thermo-physical properties of molten salt with nanoparticles for solar energy application," Energy, Elsevier, vol. 282(C).
    15. Zakir Khan & Zulfiqar Ahmad Khan, 2021. "Performance Evaluation of Coupled Thermal Enhancement through Novel Wire-Wound Fins Design and Graphene Nano-Platelets in Shell-and-Tube Latent Heat Storage System," Energies, MDPI, vol. 14(13), pages 1-21, June.
    16. Yasmine Lalau & Sacha Rigal & Jean-Pierre Bédécarrats & Didier Haillot, 2024. "Latent Thermal Energy Storage System for Heat Recovery between 120 and 150 °C: Material Stability and Corrosion," Energies, MDPI, vol. 17(4), pages 1-17, February.
    17. Li, Yantong & Huang, Gongsheng & Xu, Tao & Liu, Xiaoping & Wu, Huijun, 2018. "Optimal design of PCM thermal storage tank and its application for winter available open-air swimming pool," Applied Energy, Elsevier, vol. 209(C), pages 224-235.
    18. Xu, Haoxin & Romagnoli, Alessandro & Sze, Jia Yin & Py, Xavier, 2017. "Application of material assessment methodology in latent heat thermal energy storage for waste heat recovery," Applied Energy, Elsevier, vol. 187(C), pages 281-290.
    19. Mohamed Zbair & Simona Bennici, 2021. "Survey Summary on Salts Hydrates and Composites Used in Thermochemical Sorption Heat Storage: A Review," Energies, MDPI, vol. 14(11), pages 1-33, May.
    20. Mohammadreza Ebrahimnataj Tiji & Jasim M. Mahdi & Hayder I. Mohammed & Hasan Sh. Majdi & Abbas Ebrahimi & Rohollah Babaei Mahani & Pouyan Talebizadehsardari & Wahiba Yaïci, 2021. "Natural Convection Effect on Solidification Enhancement in a Multi-Tube Latent Heat Storage System: Effect of Tubes’ Arrangement," Energies, MDPI, vol. 14(22), pages 1-23, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1080-:d:1345029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.