IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i21p9423-d1510059.html
   My bibliography  Save this article

The Influence of Gas Fuel Enrichment with Hydrogen on the Combustion Characteristics of Combustors: A Review

Author

Listed:
  • Rabeea M. Ghazal

    (Department of Mechanical Engineering, Faculty of Engineering, Karabük University, Karabük 78050, Turkey)

  • Abdulrazzak Akroot

    (Department of Mechanical Engineering, Faculty of Engineering, Karabük University, Karabük 78050, Turkey)

  • Hasanain A. Abdul Wahhab

    (Training and Workshop Centre, University of Technology-Iraq, Baghdad 35050, Iraq)

  • Abdulrahman E. J. Alhamd

    (Department of Mechanical Engineering, Faculty of Engineering, Karabük University, Karabük 78050, Turkey)

  • Ameer Hasan Hamzah

    (Department of Mechanical Engineering, Faculty of Engineering, Karabük University, Karabük 78050, Turkey)

  • Mothana Bdaiwi

    (Department of Mechanical Engineering, Faculty of Engineering, Karabük University, Karabük 78050, Turkey)

Abstract

Hydrogen is a promising fuel because it has good capabilities to operate gas turbines. Due to its ignition speed, which exceeds the ignition of traditional fuel, it achieves a higher thermal efficiency while the resulting emissions are low. So, it was used as a clean and sustainable energy source. This paper reviews the most important research that was concerned with studying the characteristics of hydrogen combustion within incinerators and power generation equipment, where hydrogen was used as a fuel mixed with traditional fuel in the combustion chambers of gas turbines. It also includes an evaluation of the combustion processes and flame formation resulting from the enrichment of gaseous fuels with hydrogen and partial oxidation. A large amount of theoretical and experimental work in this field has been reviewed. This review summarizes the predictive and experimental results of various research interests in the field of hydrogen combustion and also production.

Suggested Citation

  • Rabeea M. Ghazal & Abdulrazzak Akroot & Hasanain A. Abdul Wahhab & Abdulrahman E. J. Alhamd & Ameer Hasan Hamzah & Mothana Bdaiwi, 2024. "The Influence of Gas Fuel Enrichment with Hydrogen on the Combustion Characteristics of Combustors: A Review," Sustainability, MDPI, vol. 16(21), pages 1-32, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9423-:d:1510059
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/21/9423/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/21/9423/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tan, Yan & E, Jiaqiang & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Li, Jintao, 2022. "Investigation on combustion characteristics and thermal performance of a three rearward-step structure micro combustor fueled by premixed hydrogen/air," Renewable Energy, Elsevier, vol. 186(C), pages 486-504.
    2. Christina Ingo & Jessica Tuuf & Margareta Björklund-Sänkiaho, 2022. "Impact of Hydrogen on Natural Gas Compositions to Meet Engine Gas Quality Requirements," Energies, MDPI, vol. 15(21), pages 1-13, October.
    3. Hanna Brauers & Philipp M. Richter, 2016. "The Paris Climate Agreement: Is It Sufficient to Limit Climate Change?," DIW Roundup: Politik im Fokus 91, DIW Berlin, German Institute for Economic Research.
    4. Ditaranto, Mario & Heggset, Tarjei & Berstad, David, 2020. "Concept of hydrogen fired gas turbine cycle with exhaust gas recirculation: Assessment of process performance," Energy, Elsevier, vol. 192(C).
    5. Damien Guilbert & Gianpaolo Vitale, 2021. "Hydrogen as a Clean and Sustainable Energy Vector for Global Transition from Fossil-Based to Zero-Carbon," Clean Technol., MDPI, vol. 3(4), pages 1-29, December.
    6. Chen, Danan & Li, Jun & Li, Xing & Deng, Lisheng & He, Zhaohong & Huang, Hongyu & Kobayashi, Noriyuki, 2023. "Study on combustion characteristics of hydrogen addition on ammonia flame at a porous burner," Energy, Elsevier, vol. 263(PA).
    7. Donato Cecere & Eugenio Giacomazzi & Antonio Di Nardo & Giorgio Calchetti, 2023. "Gas Turbine Combustion Technologies for Hydrogen Blends," Energies, MDPI, vol. 16(19), pages 1-29, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Donato Cecere & Matteo Cimini & Simone Carpenella & Jan Caldarelli & Eugenio Giacomazzi, 2024. "Composition and Injection Angle Effects on Combustion of an NH 3 /H 2 /N 2 Jet in an Air Crossflow," Energies, MDPI, vol. 17(20), pages 1-21, October.
    2. Khusniddin Alikulov & Zarif Aminov & La Hoang Anh & Tran Dang Xuan & Wookyung Kim, 2024. "Comparative Technical and Economic Analyses of Hydrogen-Based Steel and Power Sectors," Energies, MDPI, vol. 17(5), pages 1-30, March.
    3. Zhao, He & Zhao, Dan & Sun, Dakun & Semlitsch, Bernhard, 2024. "Electrical power, energy efficiency, NO and CO emissions investigations of an ammonia/methane-fueled micro-thermal photovoltaic system with a reduced chemical reaction mechanism," Energy, Elsevier, vol. 305(C).
    4. Ahmad Alzahrani & Senthil Kumar Ramu & Gunapriya Devarajan & Indragandhi Vairavasundaram & Subramaniyaswamy Vairavasundaram, 2022. "A Review on Hydrogen-Based Hybrid Microgrid System: Topologies for Hydrogen Energy Storage, Integration, and Energy Management with Solar and Wind Energy," Energies, MDPI, vol. 15(21), pages 1-32, October.
    5. Shen, Wenkai & Xing, Chang & Liu, Haiqing & Liu, Li & Hu, Qiming & Wu, Guohua & Yang, Yujia & Wu, Shaohua & Qiu, Penghua, 2022. "Exhaust gas recirculation effects on flame heat release rate distribution and dynamic characteristics in a micro gas turbine," Energy, Elsevier, vol. 249(C).
    6. Pashchenko, Dmitry, 2023. "Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    7. Tian, Xinghua & Xu, Li & Peng, Qingguo & Wu, Yifeng & Wang, Hao & Yan, Feng & Zhang, Long & Teng, Peng & Fu, Shuai, 2024. "Experimental and numerical investigation on energy efficiency improvement of methane/propane added of hydrogen-fueled micro power generation," Energy, Elsevier, vol. 302(C).
    8. Eugenio Giacomazzi & Donato Cecere & Matteo Cimini & Simone Carpenella, 2023. "Direct Numerical Simulation of a Reacting Turbulent Hydrogen/Ammonia/Nitrogen Jet in an Air Crossflow at 5 Bar," Energies, MDPI, vol. 16(23), pages 1-17, November.
    9. Lopez-Ruiz, G. & Alava, I. & Blanco, J.M., 2023. "Impact of H2/CH4 blends on the flexibility of micromix burners applied to industrial combustion systems," Energy, Elsevier, vol. 270(C).
    10. Henrik Zsiborács & András Vincze & Gábor Pintér & Nóra Hegedűsné Baranyai, 2023. "A Comparative Examination of the Electricity Saving Potentials of Direct Residential PV Energy Use in European Countries," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
    11. Mustafa Alnaeli & Mohammad Alnajideen & Rukshan Navaratne & Hao Shi & Pawel Czyzewski & Ping Wang & Sven Eckart & Ali Alsaegh & Ali Alnasif & Syed Mashruk & Agustin Valera Medina & Philip John Bowen, 2023. "High-Temperature Materials for Complex Components in Ammonia/Hydrogen Gas Turbines: A Critical Review," Energies, MDPI, vol. 16(19), pages 1-46, October.
    12. Jinshen Tong & Tao Cai, 2022. "Enhancing Thermal Performance, Exergy and Thermodynamics Efficiency of Premixed Methane/Air Micro-Planar Combustor in Micro-Thermophotovoltaic Systems," Energies, MDPI, vol. 16(1), pages 1-21, December.
    13. Lv, Chengkun & Huang, Qian & Lan, Zhu & Chang, Juntao & Yu, Daren, 2023. "Parametric optimization and exergy analysis of a high mach number aeroengine with an ammonia mass injection pre-compressor cooling cycle," Energy, Elsevier, vol. 282(C).
    14. Eugenio Giacomazzi & Guido Troiani & Antonio Di Nardo & Giorgio Calchetti & Donato Cecere & Giuseppe Messina & Simone Carpenella, 2023. "Hydrogen Combustion: Features and Barriers to Its Exploitation in the Energy Transition," Energies, MDPI, vol. 16(20), pages 1-30, October.
    15. Ajanovic, Amela & Sayer, Marlene & Haas, Reinhard, 2024. "On the future relevance of green hydrogen in Europe," Applied Energy, Elsevier, vol. 358(C).
    16. Wu, Yuwen & Weng, Chunsheng & Zheng, Quan & Wei, Wanli & Bai, Qiaodong, 2021. "Experimental research on the performance of a rotating detonation combustor with a turbine guide vane," Energy, Elsevier, vol. 218(C).
    17. Roxana Grigore & Aneta Hazi & Ioan Viorel Banu & Sorin Eugen Popa & Sorin Gabriel Vernica, 2024. "Enhancing the Energy Performance of a Gas Turbine: Component of a High-Efficiency Cogeneration Plant," Energies, MDPI, vol. 17(19), pages 1-17, September.
    18. Zhang, Zhiqing & Lv, Junshuai & Xie, Guanglin & Wang, Su & Ye, Yanshuai & Huang, Gaohua & Tan, Donlgi, 2022. "Effect of assisted hydrogen on combustion and emission characteristics of a diesel engine fueled with biodiesel," Energy, Elsevier, vol. 254(PA).
    19. Rafael Estevez & Francisco J. López-Tenllado & Laura Aguado-Deblas & Felipa M. Bautista & Antonio A. Romero & Diego Luna, 2023. "Current Research on Green Ammonia (NH 3 ) as a Potential Vector Energy for Power Storage and Engine Fuels: A Review," Energies, MDPI, vol. 16(14), pages 1-33, July.
    20. Li, Kun & Cheng, Leming & Zhao, Xin & Wang, Bo & Zhang, Qingyu & Zhu, Leigang & Kang, Qixun & Ma, Zhangke, 2024. "Experimental study of NH3 and coal Co-firing in a CFB and its nitrogen conversion," Energy, Elsevier, vol. 304(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9423-:d:1510059. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.