IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v281y2023ics0360544223016626.html
   My bibliography  Save this article

Hydrothermal liquefaction for sludge-to-energy conversion: An evaluation of biocrude production and management of waste streams

Author

Listed:
  • Liu, Huan
  • Basar, Ibrahim Alper
  • Eskicioglu, Cigdem

Abstract

Hydrothermal liquefaction (HTL) is a rapidly developing technology that converts waste biomass, such as municipal sludge, into a petroleum-like biofuel known as biocrude. At the HTL temperature/pressure of 350 °C/170 bar that simulates an HTL unit designed for a wastewater treatment plant (WWTP), this study found that >64% of energy could be recovered as biocrude from mixed primary and secondary sludge. HTL process also generates two waste streams, hydrochar and HTL aqueous. Heavy metals tend to accumulate in hydrochar, which raises concerns about its valorization. Hydrochar had concerning amounts of Cd, Mo, and Zn for land application, while it was non-hazardous for landfilling. Hydrochar had the most P distribution, resulting in a high concentration (4.6% by weight). Almost all P could be recovered by acidic extraction from hydrochar. The impacts of returning HTL aqueous to wastewater treatment processes were evaluated for the first time. HTL aqueous could be aerobically treated. However, its return increased the final effluent COD by 16.3% and 20.5% and decreased UV disinfection performance by 4% and 8% for average flow and low flow (dry season) conditions, respectively. In conclusion, this study yielded significant information in guiding the development of wastewater biorefinery by incorporating HTL into WWTPs.

Suggested Citation

  • Liu, Huan & Basar, Ibrahim Alper & Eskicioglu, Cigdem, 2023. "Hydrothermal liquefaction for sludge-to-energy conversion: An evaluation of biocrude production and management of waste streams," Energy, Elsevier, vol. 281(C).
  • Handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223016626
    DOI: 10.1016/j.energy.2023.128268
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223016626
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128268?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Skaggs, Richard L. & Coleman, André M. & Seiple, Timothy E. & Milbrandt, Anelia R., 2018. "Waste-to-Energy biofuel production potential for selected feedstocks in the conterminous United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2640-2651.
    2. Yang, Jie & He, Quan (Sophia) & Niu, Haibo & Corscadden, Kenneth & Astatkie, Tess, 2018. "Hydrothermal liquefaction of biomass model components for product yield prediction and reaction pathways exploration," Applied Energy, Elsevier, vol. 228(C), pages 1618-1628.
    3. Li, Shuyun & Jiang, Yuan & Snowden-Swan, Lesley J. & Askander, Jalal A. & Schmidt, Andrew J. & Billing, Justin M., 2021. "Techno-economic uncertainty analysis of wet waste-to-biocrude via hydrothermal liquefaction," Applied Energy, Elsevier, vol. 283(C).
    4. Masoumi, Shima & Boahene, Philip E. & Dalai, Ajay K., 2021. "Biocrude oil and hydrochar production and characterization obtained from hydrothermal liquefaction of microalgae in methanol-water system," Energy, Elsevier, vol. 217(C).
    5. Huang, Hua-jun & Chang, Yan-chao & Lai, Fa-ying & Zhou, Chun-fei & Pan, Zi-qian & Xiao, Xiao-feng & Wang, Jia-xin & Zhou, Chun-huo, 2019. "Co-liquefaction of sewage sludge and rice straw/wood sawdust: The effect of process parameters on the yields/properties of bio-oil and biochar products," Energy, Elsevier, vol. 173(C), pages 140-150.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Chen & Fangfang Lou & Xueyi Zhang & Chengjun Shen & Weicheng Pan & Shuang Wang, 2023. "Hydrothermal Conversion of Microalgae Slurry in a Continuous Solar Collector with Static Mixer for Heat Transfer Enhancement," Energies, MDPI, vol. 16(24), pages 1-16, December.
    2. Zhu, Zhe & Sun, Zhiqiang & Yu, Xiaofeng & Zhang, Shuo & Cao, Xinxin & Liu, Xuliang & Guo, Ziwen & Rosendahl, Lasse & Chen, Guanyi, 2024. "Valorization of low heavy metal-accumulating plants through catalytic hydrothermal liquefaction with attapulgite: Product characterization and migration behavior of heavy metals," Energy, Elsevier, vol. 295(C).
    3. Marco Balsamo & Francesca Di Lauro & Maria Laura Alfieri & Paola Manini & Piero Salatino & Fabio Montagnaro & Roberto Solimene, 2024. "Unravelling the Role of Biochemical Compounds within the Hydrothermal Liquefaction Process of Real Sludge Mixtures," Sustainability, MDPI, vol. 16(5), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Qingyin & Yuan, Xiangzhou & Hu, Xun & Meers, Erik & Ong, Hwai Chyuan & Chen, Wei-Hsin & Duan, Peigao & Zhang, Shicheng & Lee, Ki Bong & Ok, Yong Sik, 2022. "Co-liquefaction of mixed biomass feedstocks for bio-oil production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Yuan, Zhilong & Jia, Guangchao & Cui, Xin & Song, Xueping & Wang, Cuiping & Zhao, Peitao & Ragauskas, Art J., 2022. "Effects of temperature and time on supercritical methanol Co-Liquefaction of rice straw and linear low-density polyethylene wastes," Energy, Elsevier, vol. 245(C).
    3. Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
    4. Raquel de Souza Deuber & Jéssica Marcon Bressanin & Daniel Santos Fernandes & Henrique Real Guimarães & Mateus Ferreira Chagas & Antonio Bonomi & Leonardo Vasconcelos Fregolente & Marcos Djun Barbosa , 2023. "Production of Sustainable Aviation Fuels from Lignocellulosic Residues in Brazil through Hydrothermal Liquefaction: Techno-Economic and Environmental Assessments," Energies, MDPI, vol. 16(6), pages 1-21, March.
    5. Yang, Tianhua & Du, Chongzhen & Li, Bingshuo & Liu, Zheng & Kai, Xingping, 2022. "Influence of alkali and alkaline earth metals on the hydrothermal liquefaction of lignocellulosic model compounds," Renewable Energy, Elsevier, vol. 188(C), pages 1038-1048.
    6. Zhu, Junyu & Liu, Xiangjie & Zhang, Xin & Deng, Bo & Xu, Chao & Zhang, Congcong & Yuan, Qiaoxia, 2023. "Experimental study on black soldier fly (Hermetia illucens L.) larvae hydrothermal liquefaction in methanol-water Co-solvent: Bio-oil yields and properties," Renewable Energy, Elsevier, vol. 218(C).
    7. Wang, Jian & Wang, Yincheng & Dong, Xiaoshan & Hu, Yongjie & Tao, Junyu & Kumar, Akash & Yan, Beibei & Chen, Yuxuan & Su, Hong & Chen, Guanyi, 2024. "Insights into behaviors of functional groups in biomass derived products during aqueous phase reforming over Ni/α-MoO3 catalysts," Renewable Energy, Elsevier, vol. 224(C).
    8. Sebastian Lubjuhn & Sandra Venghaus, 2024. "Unlocking the potential of the bioeconomy for climate change reduction: The optimal use of lignocellulosic biomass in Germany," Journal of Industrial Ecology, Yale University, vol. 28(1), pages 144-159, February.
    9. Chen, Haitao & He, Zhixia & Zhang, Bo & Feng, Huan & Kandasamy, Sabariswaran & Wang, Bin, 2019. "Effects of the aqueous phase recycling on bio-oil yield in hydrothermal liquefaction of Spirulina Platensis, α-cellulose, and lignin," Energy, Elsevier, vol. 179(C), pages 1103-1113.
    10. Guanyu Zhang & Kejie Wang & Quan Liu & Lujia Han & Xuesong Zhang, 2022. "A Comprehensive Hydrothermal Co-Liquefaction of Diverse Biowastes for Energy-Dense Biocrude Production: Synergistic and Antagonistic Effects," IJERPH, MDPI, vol. 19(17), pages 1-17, August.
    11. Leng, Lijian & Li, Tanghao & Zhan, Hao & Rizwan, Muhammad & Zhang, Weijin & Peng, Haoyi & Yang, Zequn & Li, Hailong, 2023. "Machine learning-aided prediction of nitrogen heterocycles in bio-oil from the pyrolysis of biomass," Energy, Elsevier, vol. 278(PB).
    12. Iqra Shahid & Ghulam Hussain & Mehwish Anis & Muhammad Umar Farooq & Muhammad Usman & Yasser Fouad & Jaroslaw Krzywanski, 2023. "Enzymatic Co-Fermentation of Onion Waste for Bioethanol Production Using Saccharomyces cerevisiae and Pichia pastoris," Energies, MDPI, vol. 16(5), pages 1-12, February.
    13. Jie Yang & Hao Chen & Haibo Niu & Josiah McNutt & Quan He, 2021. "A Comparative Study on Thermochemical Valorization Routes for Spent Coffee Grounds," Energies, MDPI, vol. 14(13), pages 1-10, June.
    14. Ratha, Sachitra Kumar & Renuka, Nirmal & Abunama, Taher & Rawat, Ismail & Bux, Faizal, 2022. "Hydrothermal liquefaction of algal feedstocks: The effect of biomass characteristics and extraction solvents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    15. Badgett, Alex & Newes, Emily & Milbrandt, Anelia, 2019. "Economic analysis of wet waste-to-energy resources in the United States," Energy, Elsevier, vol. 176(C), pages 224-234.
    16. Liu, Tonggui & Jiao, HuiTing & Yang, Longsheng & Zhang, Weijin & Hu, Yingbing & Guo, Yonghao & Yang, Lihong & Leng, Songqi & Chen, Jiefeng & Chen, Jie & Peng, Haoyi & Leng, Lijian & Zhou, Wenguang, 2022. "Co-hydrothermal carbonization of cellulose, hemicellulose, and protein with aqueous phase recirculation: Insight into the reaction mechanisms on hydrochar formation," Energy, Elsevier, vol. 251(C).
    17. Hietala, David C. & Godwin, Casey M. & Cardinale, Bradley J. & Savage, Phillip E., 2019. "The independent and coupled effects of feedstock characteristics and reaction conditions on biocrude production by hydrothermal liquefaction," Applied Energy, Elsevier, vol. 235(C), pages 714-728.
    18. Martinez-Valencia, Lina & Garcia-Perez, Manuel & Wolcott, Michael P., 2021. "Supply chain configuration of sustainable aviation fuel: Review, challenges, and pathways for including environmental and social benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    19. Li, Shuyun & Jiang, Yuan & Snowden-Swan, Lesley J. & Askander, Jalal A. & Schmidt, Andrew J. & Billing, Justin M., 2021. "Techno-economic uncertainty analysis of wet waste-to-biocrude via hydrothermal liquefaction," Applied Energy, Elsevier, vol. 283(C).
    20. Munir, M.T. & Mohaddespour, Ahmad & Nasr, A.T. & Carter, Susan, 2021. "Municipal solid waste-to-energy processing for a circular economy in New Zealand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223016626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.