IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ipas0360544223013014.html
   My bibliography  Save this article

Thermodynamic analysis of a post-combustion carbon dioxide capture process in a pilot plant equipped with a heat integrated stripper

Author

Listed:
  • Tatarczuk, Adam
  • Szega, Marcin
  • Zuwała, Jarosław

Abstract

This paper presents a thermodynamic analysis of a carbon dioxide absorption process from flue gases, focusing on the Heat Integrated Stripper (HIS) as a promising modification to the conventional process. The primary objective is to compare the performance of the HIS-modified process with that of the standard process. Experimental research was conducted on a mobile pilot plant using aqueous solutions of MEA 30% for treating 200 m3/h of the flue gas.

Suggested Citation

  • Tatarczuk, Adam & Szega, Marcin & Zuwała, Jarosław, 2023. "Thermodynamic analysis of a post-combustion carbon dioxide capture process in a pilot plant equipped with a heat integrated stripper," Energy, Elsevier, vol. 278(PA).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223013014
    DOI: 10.1016/j.energy.2023.127907
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223013014
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127907?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Szega, Marcin, 2018. "Issues of an optimization of measurements location in redundant measurements systems of an energy conversion process – A case study," Energy, Elsevier, vol. 165(PA), pages 1034-1047.
    2. Perpiñán, Jorge & Bailera, Manuel & Peña, Begoña & Romeo, Luis M. & Eveloy, Valerie, 2023. "Technical and economic assessment of iron and steelmaking decarbonization via power to gas and amine scrubbing," Energy, Elsevier, vol. 276(C).
    3. Magnanelli, Elisa & Mosby, Jostein & Becidan, Michael, 2021. "Scenarios for carbon capture integration in a waste-to-energy plant," Energy, Elsevier, vol. 227(C).
    4. Guo, Yunzhao & Zhang, Huiping & Fu, Kaiyun & Chen, Xianfu & Qiu, Minghui & Fan, Yiqun, 2023. "Integration of solid acid catalyst and ceramic membrane to boost amine-based CO2 desorption," Energy, Elsevier, vol. 274(C).
    5. Szega, Marcin, 2020. "Methodology of advanced data validation and reconciliation application in industrial thermal processes," Energy, Elsevier, vol. 198(C).
    6. Szega, Marcin, 2018. "Extended applications of the advanced data validation and reconciliation method in studies of energy conversion processes," Energy, Elsevier, vol. 161(C), pages 156-171.
    7. Zhang, Zhien & Borhani, Tohid N. & Olabi, Abdul G., 2020. "Status and perspective of CO2 absorption process," Energy, Elsevier, vol. 205(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tatarczuk, Adam & Tańczyk, Marek & Więcław-Solny, Lucyna & Zdeb, Janusz, 2024. "Pilot plant results of amine-based carbon capture with heat integrated stripper," Applied Energy, Elsevier, vol. 367(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Szega, Marcin & Czyż, Tomasz, 2019. "Problems of calculation the energy efficiency of a dual-fuel steam boiler fired with industrial waste gases," Energy, Elsevier, vol. 178(C), pages 134-144.
    2. Szega, Marcin & Żymełka, Piotr & Janda, Tomasz, 2022. "Improving the accuracy of electricity and heat production forecasting in a supervision computer system of a selected gas-fired CHP plant operation," Energy, Elsevier, vol. 239(PE).
    3. Żymełka, Piotr & Szega, Marcin, 2020. "Issues of an improving the accuracy of energy carriers production forecasting in a computer-aided system for monitoring the operation of a gas-fired cogeneration plant," Energy, Elsevier, vol. 209(C).
    4. Li, Long & Liu, Weizao & Qin, Zhifeng & Zhang, Guoquan & Yue, Hairong & Liang, Bin & Tang, Shengwei & Luo, Dongmei, 2021. "Research on integrated CO2 absorption-mineralization and regeneration of absorbent process," Energy, Elsevier, vol. 222(C).
    5. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    6. Loyola-Fuentes, José & Smith, Robin, 2019. "Data reconciliation and gross error detection in crude oil pre-heat trains undergoing shell-side and tube-side fouling deposition," Energy, Elsevier, vol. 183(C), pages 368-384.
    7. Chang, Yuan & Gao, Siqi & Ma, Qian & Wei, Ying & Li, Guoping, 2024. "Techno-economic analysis of carbon capture and utilization technologies and implications for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    8. Alammar, Ahmed A. & Rezk, Ahmed & Alaswad, Abed & Fernando, Julia & Olabi, A.G. & Decker, Stephanie & Ruhumuliza, Joseph & Gasana, Quénan, 2022. "The technical, economic, and environmental feasibility of a bioheat-driven adsorption cooling system for food cold storing: A case study of Rwanda," Energy, Elsevier, vol. 258(C).
    9. A. G. Olabi & Tabbi Wilberforce & Enas Taha Sayed & Nabila Shehata & Abdul Hai Alami & Hussein M. Maghrabie & Mohammad Ali Abdelkareem, 2022. "Prospect of Post-Combustion Carbon Capture Technology and Its Impact on the Circular Economy," Energies, MDPI, vol. 15(22), pages 1-38, November.
    10. Plis, Marcin & Rusinowski, Henryk, 2019. "Identification of mathematical models of thermal processes with reconciled measurement results," Energy, Elsevier, vol. 177(C), pages 192-202.
    11. Rashidi, Hamed & Mamivand, Sajad, 2022. "Experimental and numerical mass transfer study of carbon dioxide absorption using Al2O3/water nanofluid in wetted wall column," Energy, Elsevier, vol. 238(PA).
    12. Szega, Marcin, 2020. "Methodology of advanced data validation and reconciliation application in industrial thermal processes," Energy, Elsevier, vol. 198(C).
    13. Li, Yifu & Zhang, Zhien & Huang, Yunqiao & Zhang, Yi & Akula, Sivaraju, 2024. "Recent advancements in the application of electrospun nanofibers for carbon dioxide capture and utilization," Applied Energy, Elsevier, vol. 365(C).
    14. Eslick, John C. & Zamarripa, Miguel A. & Ma, Jinliang & Wang, Maojian & Bhattacharya, Indrajit & Rychener, Brian & Pinkston, Philip & Bhattacharyya, Debangsu & Zitney, Stephen E. & Burgard, Anthony P., 2022. "Predictive modeling of a subcritical pulverized-coal power plant for optimization: Parameter estimation, validation, and application," Applied Energy, Elsevier, vol. 319(C).
    15. Otgonbayar, Tuvshinjargal & Mazzotti, Marco, 2024. "Modeling and assessing the integration of CO2 capture in waste-to-energy plants delivering district heating," Energy, Elsevier, vol. 290(C).
    16. Wienchol, Paulina & Korus, Agnieszka & Szlęk, Andrzej & Ditaranto, Mario, 2022. "Thermogravimetric and kinetic study of thermal degradation of various types of municipal solid waste (MSW) under N2, CO2 and oxy-fuel conditions," Energy, Elsevier, vol. 248(C).
    17. Lei Su & Wenjiao Yu & Zhongxuan Zhou, 2023. "Global Trends of Carbon Finance: A Bibliometric Analysis," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    18. Yu, Jianxi & Han, Wenquan & Chen, Kang & Liu, Pei & Li, Zheng, 2022. "Gross error detection in steam turbine measurements based on data reconciliation of inequality constraints," Energy, Elsevier, vol. 253(C).
    19. Ortiz, C. & García-Luna, S. & Carro, A. & Chacartegui, R. & Pérez-Maqueda, L., 2023. "Negative emissions power plant based on flexible calcium-looping process integrated with renewables and methane production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    20. Wilkes, Mathew Dennis & Mukherjee, Sanjay & Brown, Solomon, 2021. "Transient CO2 capture for open-cycle gas turbines in future energy systems," Energy, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223013014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.