IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v183y2019icp368-384.html
   My bibliography  Save this article

Data reconciliation and gross error detection in crude oil pre-heat trains undergoing shell-side and tube-side fouling deposition

Author

Listed:
  • Loyola-Fuentes, José
  • Smith, Robin

Abstract

Fouling is a problem in crude oil refineries. The effect of fouling deposition is particularly significant in the heat exchanger network (or pre-heat train) upstream of the crude oil distillation unit. A wide variety of semi-empirical models are available for predicting the fouling behaviour. These models can be obtained by fitting experimental or industrial operating data to a specific fouling model. When industrial data are used, the effect of measurement error and presence of faulty instruments (or gross errors) should be accounted for. This work presents a new methodology that allows for data reconciliation and gross error detection, together with the estimation of fouling model parameters for a pre-heat train undergoing different fouling mechanisms on the shell and tube-sides. The methodology is tested in a simulated case study. It is shown that the data reconciliation and gross error detection algorithms are able to minimise the measurement errors and to identify the presence of single or multiple faulty instruments. The fouling models for each heat exchanger are estimated using the reconciled data, and the fouling behaviour and thermal performance of the network are predicted and analysed.

Suggested Citation

  • Loyola-Fuentes, José & Smith, Robin, 2019. "Data reconciliation and gross error detection in crude oil pre-heat trains undergoing shell-side and tube-side fouling deposition," Energy, Elsevier, vol. 183(C), pages 368-384.
  • Handle: RePEc:eee:energy:v:183:y:2019:i:c:p:368-384
    DOI: 10.1016/j.energy.2019.06.119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219312514
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.06.119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Xiaolong & Liu, Pei & Li, Zheng, 2014. "Gross error isolability for operational data in power plants," Energy, Elsevier, vol. 74(C), pages 918-927.
    2. Szega, Marcin, 2017. "An improvement of measurements reliability in thermal processes by application of the advanced data reconciliation method with the use of fuzzy uncertainties of measurements," Energy, Elsevier, vol. 141(C), pages 2490-2498.
    3. Jiang, Xiaolong & Liu, Pei & Li, Zheng, 2014. "Data reconciliation and gross error detection for operational data in power plants," Energy, Elsevier, vol. 75(C), pages 14-23.
    4. Szega, Marcin, 2018. "Extended applications of the advanced data validation and reconciliation method in studies of energy conversion processes," Energy, Elsevier, vol. 161(C), pages 156-171.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Jianxi & Han, Wenquan & Chen, Kang & Liu, Pei & Li, Zheng, 2022. "Gross error detection in steam turbine measurements based on data reconciliation of inequality constraints," Energy, Elsevier, vol. 253(C).
    2. Klemeš, Jiří Jaromír & Wang, Qiu-Wang & Varbanov, Petar Sabev & Zeng, Min & Chin, Hon Huin & Lal, Nathan Sanjay & Li, Nian-Qi & Wang, Bohong & Wang, Xue-Chao & Walmsley, Timothy Gordon, 2020. "Heat transfer enhancement, intensification and optimisation in heat exchanger network retrofit and operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    3. Ahmed Shokry & Piero Baraldi & Andrea Castellano & Luigi Serio & Enrico Zio, 2021. "Identification of Critical Components in the Complex Technical Infrastructure of the Large Hadron Collider Using Relief Feature Ranking and Support Vector Machines," Energies, MDPI, vol. 14(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Szega, Marcin, 2018. "Issues of an optimization of measurements location in redundant measurements systems of an energy conversion process – A case study," Energy, Elsevier, vol. 165(PA), pages 1034-1047.
    2. Du, Zhimin & Chen, Ling & Jin, Xinqiao, 2017. "Data-driven based reliability evaluation for measurements of sensors in a vapor compression system," Energy, Elsevier, vol. 122(C), pages 237-248.
    3. Yu, Jianxi & Han, Wenquan & Chen, Kang & Liu, Pei & Li, Zheng, 2022. "Gross error detection in steam turbine measurements based on data reconciliation of inequality constraints," Energy, Elsevier, vol. 253(C).
    4. Guo, Sisi & Liu, Pei & Li, Zheng, 2016. "Identification and isolability of multiple gross errors in measured data for power plants," Energy, Elsevier, vol. 114(C), pages 177-187.
    5. Wang, Yanhong & Cao, Lihua & Li, Xingcan & Wang, Jiaxing & Hu, Pengfei & Li, Bo & Li, Yong, 2020. "A novel thermodynamic method and insight of heat transfer characteristics on economizer for supercritical thermal power plant," Energy, Elsevier, vol. 191(C).
    6. Yu, Jianxi & Liu, Pei & Li, Zheng, 2021. "Data reconciliation of the thermal system of a double reheat power plant for thermal calculation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. Plis, Marcin & Rusinowski, Henryk, 2019. "Identification of mathematical models of thermal processes with reconciled measurement results," Energy, Elsevier, vol. 177(C), pages 192-202.
    8. Szega, Marcin, 2020. "Methodology of advanced data validation and reconciliation application in industrial thermal processes," Energy, Elsevier, vol. 198(C).
    9. Vazquez, Luis & Blanco, Jesús María & Ramis, Rolando & Peña, Francisco & Diaz, David, 2015. "Robust methodology for steady state measurements estimation based framework for a reliable long term thermal power plant operation performance monitoring," Energy, Elsevier, vol. 93(P1), pages 923-944.
    10. Eslick, John C. & Zamarripa, Miguel A. & Ma, Jinliang & Wang, Maojian & Bhattacharya, Indrajit & Rychener, Brian & Pinkston, Philip & Bhattacharyya, Debangsu & Zitney, Stephen E. & Burgard, Anthony P., 2022. "Predictive modeling of a subcritical pulverized-coal power plant for optimization: Parameter estimation, validation, and application," Applied Energy, Elsevier, vol. 319(C).
    11. Guo, Sisi & Liu, Pei & Li, Zheng, 2016. "Data reconciliation for the overall thermal system of a steam turbine power plant," Applied Energy, Elsevier, vol. 165(C), pages 1037-1051.
    12. Jiang, Xiaolong & Liu, Pei & Li, Zheng, 2014. "A data reconciliation based framework for integrated sensor and equipment performance monitoring in power plants," Applied Energy, Elsevier, vol. 134(C), pages 270-282.
    13. Šomplák, Radovan & Nevrlý, Vlastimír & Smejkalová, Veronika & Šmídová, Zlata & Pavlas, Martin, 2019. "Bulky waste for energy recovery: Analysis of spatial distribution," Energy, Elsevier, vol. 181(C), pages 827-839.
    14. Yu, Jianxi & Petersen, Nils & Liu, Pei & Li, Zheng & Wirsum, Manfred, 2022. "Hybrid modelling and simulation of thermal systems of in-service power plants for digital twin development," Energy, Elsevier, vol. 260(C).
    15. Jiang, Xiaolong & Liu, Pei & Li, Zheng, 2014. "Gross error isolability for operational data in power plants," Energy, Elsevier, vol. 74(C), pages 918-927.
    16. Szega, Marcin & Żymełka, Piotr & Janda, Tomasz, 2022. "Improving the accuracy of electricity and heat production forecasting in a supervision computer system of a selected gas-fired CHP plant operation," Energy, Elsevier, vol. 239(PE).
    17. Szega, Marcin, 2018. "Extended applications of the advanced data validation and reconciliation method in studies of energy conversion processes," Energy, Elsevier, vol. 161(C), pages 156-171.
    18. Kolenda, Z. & Styrylska, T., 2018. "To memory of Professor Jan Szargut," Energy, Elsevier, vol. 161(C), pages 1226-1233.
    19. Szega, Marcin & Czyż, Tomasz, 2019. "Problems of calculation the energy efficiency of a dual-fuel steam boiler fired with industrial waste gases," Energy, Elsevier, vol. 178(C), pages 134-144.
    20. Liu, Bin & Gao, Qun & Jin, Hongyu & Lei, Yu & Liu, Chunlu, 2022. "System indeterminacy analysis in the embodied energy network of global construction industries," Energy, Elsevier, vol. 261(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:183:y:2019:i:c:p:368-384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.