Recent advancements in the application of electrospun nanofibers for carbon dioxide capture and utilization
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2024.123305
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lee, Chien-Chiang & Zhao, Ya-Nan, 2023. "Heterogeneity analysis of factors influencing CO2 emissions: The role of human capital, urbanization, and FDI," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
- Haleem, Noor & Khattak, Alishba & Jamal, Yousuf & Sajid, Masooma & Shahzad, Zainab & Raza, Hammad, 2022. "Development of poly vinyl alcohol (PVA) based biochar nanofibers for carbon dioxide (CO2) adsorption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
- Bijandra Kumar & Mohammad Asadi & Davide Pisasale & Suman Sinha-Ray & Brian A. Rosen & Richard Haasch & Jeremiah Abiade & Alexander L. Yarin & Amin Salehi-Khojin, 2013. "Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction," Nature Communications, Nature, vol. 4(1), pages 1-8, December.
- Hengpan Yang & Qing Lin & Chao Zhang & Xinyao Yu & Zhong Cheng & Guodong Li & Qi Hu & Xiangzhong Ren & Qianling Zhang & Jianhong Liu & Chuanxin He, 2020. "Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
- Zhang, Zhien & Li, Yifu & Zhang, Wenxiang & Wang, Junlei & Soltanian, Mohamad Reza & Olabi, Abdul Ghani, 2018. "Effectiveness of amino acid salt solutions in capturing CO2: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 179-188.
- Patrón, Gabriel D. & Ricardez-Sandoval, Luis, 2022. "An integrated real-time optimization, control, and estimation scheme for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 308(C).
- Shan Gao & Zhongti Sun & Wei Liu & Xingchen Jiao & Xiaolong Zu & Qitao Hu & Yongfu Sun & Tao Yao & Wenhua Zhang & Shiqiang Wei & Yi Xie, 2017. "Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction," Nature Communications, Nature, vol. 8(1), pages 1-9, April.
- Brigagão, George Victor & de Medeiros, José Luiz & Araújo, Ofélia de Queiroz F. & Mikulčić, Hrvoje & Duić, Neven, 2021. "A zero-emission sustainable landfill-gas-to-wire oxyfuel process: Bioenergy with carbon capture and sequestration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Zhang, Zhien & Borhani, Tohid N. & Olabi, Abdul G., 2020. "Status and perspective of CO2 absorption process," Energy, Elsevier, vol. 205(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xi Liu & Yugang He & Renhong Wu, 2024. "Revolutionizing Environmental Sustainability: The Role of Renewable Energy Consumption and Environmental Technologies in OECD Countries," Energies, MDPI, vol. 17(2), pages 1-21, January.
- Bekhzod Kuziboev & Ergash Ibadullaev & Olimjon Saidmamatov & Alibek Rajabov & Peter Marty & Sherzodbek Ruzmetov & Alisher Sherov, 2023. "The Role of Renewable Energy and Human Capital in Reducing Environmental Degradation in Europe and Central Asia: Panel Quantile Regression and GMM Approach," Energies, MDPI, vol. 16(22), pages 1-12, November.
- Jie Yin & Jing Jin & Zhouyang Yin & Liu Zhu & Xin Du & Yong Peng & Pinxian Xi & Chun-Hua Yan & Shouheng Sun, 2023. "The built-in electric field across FeN/Fe3N interface for efficient electrochemical reduction of CO2 to CO," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Li, Long & Liu, Weizao & Qin, Zhifeng & Zhang, Guoquan & Yue, Hairong & Liang, Bin & Tang, Shengwei & Luo, Dongmei, 2021. "Research on integrated CO2 absorption-mineralization and regeneration of absorbent process," Energy, Elsevier, vol. 222(C).
- Liqiang Xu & Qiufang Cui & Te Tu & Shuo Liu & Long Ji & Shuiping Yan, 2020. "Waste heat recovery from the stripped gas in carbon capture process by membrane technology: Hydrophobic and hydrophilic organic membrane cases," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(2), pages 421-435, April.
- Cai Wang & Xiaoyu Wang & Houan Ren & Yilin Zhang & Xiaomei Zhou & Jing Wang & Qingxin Guan & Yuping Liu & Wei Li, 2023. "Combining Fe nanoparticles and pyrrole-type Fe-N4 sites on less-oxygenated carbon supports for electrochemical CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Rong, Siteng & Tan, Hongzi & Pang, Zhaobin & Zong, Zhiyuan & Zhao, Rongrong & Li, Zhihe & Chen, Zhe-Ning & Zhang, Ning-Ning & Yi, Weiming & Cui, Hongyou, 2022. "Synergetic effect between Pd clusters and oxygen vacancies in hierarchical Nb2O5 for lignin-derived phenol hydrodeoxygenation into benzene," Renewable Energy, Elsevier, vol. 187(C), pages 271-281.
- Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
- Serrano, J. & Jiménez-Espadafor, F.J. & López, A., 2019. "Analysis of the effect of the hydrogen as main fuel on the performance of a modified compression ignition engine with water injection," Energy, Elsevier, vol. 173(C), pages 911-925.
- Huwei Wen & Runnan Wang & Yuhan Liu, 2024. "Towards Carbon Neutrality in Agglomeration: Impact of Eco-Industry Development on Urban Carbon Emission Efficiency," Sustainability, MDPI, vol. 16(8), pages 1-22, April.
- Giulia Tuci & Jonathan Filippi & Andrea Rossin & Lapo Luconi & Cuong Pham-Huu & Dmitry Yakhvarov & Francesco Vizza & Giuliano Giambastiani, 2020. "CO 2 Electrochemical Reduction by Exohedral N-Pyridine Decorated Metal-Free Carbon Nanotubes," Energies, MDPI, vol. 13(11), pages 1-15, May.
- Tuan-Viet Hoang & Pouya Ifaei & Kijeon Nam & Jouan Rashidi & Soonho Hwangbo & Jong-Min Oh & ChangKyoo Yoo, 2018. "Optimal Management of a Hybrid Renewable Energy System Coupled with a Membrane Bioreactor Using Enviro-Economic and Power Pinch Analyses for Sustainable Climate Change Adaption," Sustainability, MDPI, vol. 11(1), pages 1-22, December.
- Chang, Yuan & Gao, Siqi & Ma, Qian & Wei, Ying & Li, Guoping, 2024. "Techno-economic analysis of carbon capture and utilization technologies and implications for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
- Maowen Sun & Boyi Liang & Xuebin Meng & Yunfei Zhang & Zong Wang & Jia Wang, 2024. "Study on the Evolution of Spatial and Temporal Patterns of Carbon Emissions and Influencing Factors in China," Land, MDPI, vol. 13(6), pages 1-24, June.
- Alammar, Ahmed A. & Rezk, Ahmed & Alaswad, Abed & Fernando, Julia & Olabi, A.G. & Decker, Stephanie & Ruhumuliza, Joseph & Gasana, Quénan, 2022. "The technical, economic, and environmental feasibility of a bioheat-driven adsorption cooling system for food cold storing: A case study of Rwanda," Energy, Elsevier, vol. 258(C).
- Ya-Nan Zhao & Chien-Chiang Lee, 2024. "How does industrial relocation affect carbon emissions? Evidence from Chinese cities," Economic Change and Restructuring, Springer, vol. 57(6), pages 1-33, December.
- Ben Dror, Maya & Qin, Lanzhi & An, Feng, 2019. "The gap between certified and real-world passenger vehicle fuel consumption in China measured using a mobile phone application data," Energy Policy, Elsevier, vol. 128(C), pages 8-16.
- Zhang, Zhonglian & Yang, Xiaohui & Yang, Li & Wang, Zhaojun & Huang, Zezhong & Wang, Xiaopeng & Mei, Linghao, 2023. "Optimal configuration of double carbon energy system considering climate change," Energy, Elsevier, vol. 283(C).
- Lee, Chien-Chiang & Wang, Chang-song & He, Zhiwen & Xing, Wen-wu & Wang, Keying, 2023. "How does green finance affect energy efficiency? The role of green technology innovation and energy structure," Renewable Energy, Elsevier, vol. 219(P1).
- A. G. Olabi & Tabbi Wilberforce & Enas Taha Sayed & Nabila Shehata & Abdul Hai Alami & Hussein M. Maghrabie & Mohammad Ali Abdelkareem, 2022. "Prospect of Post-Combustion Carbon Capture Technology and Its Impact on the Circular Economy," Energies, MDPI, vol. 15(22), pages 1-38, November.
More about this item
Keywords
Carbon capture; Carbon utilization; Electrospun nanofibers; Nanomaterial; Sustainability;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006883. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.