IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ipas0360544223012094.html
   My bibliography  Save this article

Effects of aspect ratio and initial pressure on asymmetric flame and flame instability of premixed CO/air

Author

Listed:
  • Dou, Zengguo
  • Shen, Xiaobo
  • Zhang, Zhenwu
  • Zhou, Feng
  • Ma, Yunsheng
  • Zou, Xiong
  • Liu, Haifeng
  • Wang, Fuchen

Abstract

Syngas is a promising alternative energy carrier with low carbon and pollutants emissions, and CO is the main component. The combustion characteristics of stoichiometric CO/air mixtures with varied initial pressure (0.5–1.5 atm) and aspect ratio (12–40) were examined through experiments in a rectangular closed duct. This experiment simulated the transport and storage conditions of CO to study its combustion characteristics at different aspect ratios and initial pressures. The flame images and overpressure dynamics were captured by high-speed camera and pressure sensor, respectively. Experiment results proved that the increase in aspect ratio had an important effect on flame shape evolution. The tilted flame for low aspect ratios was affected by buoyancy, while flames with high aspect ratios were influenced by competing buoyancy and intrinsic instability. The results showed that the flame morphology and dynamics were enhanced with increasing aspect ratio and initial pressure. The intrinsic instability of premixed CO/air combustion was investigated, and the formation mechanism of tilted flame and twisted flame were comprehensively analyzed. Qualitative distinctions were made between symmetric and asymmetric flame morphology regimes.

Suggested Citation

  • Dou, Zengguo & Shen, Xiaobo & Zhang, Zhenwu & Zhou, Feng & Ma, Yunsheng & Zou, Xiong & Liu, Haifeng & Wang, Fuchen, 2023. "Effects of aspect ratio and initial pressure on asymmetric flame and flame instability of premixed CO/air," Energy, Elsevier, vol. 278(PA).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223012094
    DOI: 10.1016/j.energy.2023.127815
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223012094
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127815?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shen, Xiaobo & Zhang, Chao & Xiu, Guangli & Zhu, Hongya, 2019. "Evolution of premixed stoichiometric hydrogen/air flame in a closed duct," Energy, Elsevier, vol. 176(C), pages 265-271.
    2. Fiore, M. & Magi, V. & Viggiano, A., 2020. "Internal combustion engines powered by syngas: A review," Applied Energy, Elsevier, vol. 276(C).
    3. Yang, Xufeng & Yu, Minggao & Zheng, Kai & Wan, Shaojie & Wang, Liang, 2019. "A comparative investigation of premixed flame propagation behavior of syngas-air mixtures in closed and half-open ducts," Energy, Elsevier, vol. 178(C), pages 436-446.
    4. Hong, Yong C. & Lee, Sang J. & Shin, Dong H. & Kim, Ye J. & Lee, Bong J. & Cho, Seong Y. & Chang, Han S., 2012. "Syngas production from gasification of brown coal in a microwave torch plasma," Energy, Elsevier, vol. 47(1), pages 36-40.
    5. Shen, Xiaobo & Zhang, Zhenwu & Dou, Zengguo & Cong, Beihua & Xiao, Qiuping & Liu, Haifeng, 2022. "Premixed syngas/air combustion in closed ducts with varied aspect ratios and initial pressures," Energy, Elsevier, vol. 254(PC).
    6. Shen, Xiaobo & Zhang, Zhenwu & Dou, Zengguo & Zhang, Chao, 2021. "Premixed CO/air combustion in a closed duct with inhibition," Energy, Elsevier, vol. 230(C).
    7. Shen, Xiaobo & Xu, Jiaying & Wen, Jennifer X., 2021. "Phenomenological characteristics of hydrogen/air premixed flame propagation in closed rectangular channels," Renewable Energy, Elsevier, vol. 174(C), pages 606-615.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Xiaobo & Zhang, Zhenwu & Dou, Zengguo & Cong, Beihua & Xiao, Qiuping & Liu, Haifeng, 2022. "Premixed syngas/air combustion in closed ducts with varied aspect ratios and initial pressures," Energy, Elsevier, vol. 254(PC).
    2. Shen, Xiaobo & Zhang, Zhenwu & Dou, Zengguo & Zhang, Chao, 2021. "Premixed CO/air combustion in a closed duct with inhibition," Energy, Elsevier, vol. 230(C).
    3. Liang, He & Yan, Xingqing & Shi, Enhua & Wang, Xinfei & Qi, Chang & Ding, Jianfei & Zhang, Lianzhuo & Chen, Lei & Lv, Xianshu & Yu, Jianliang, 2024. "Effect of hydrogen blending on ammonia/air explosion characteristics under wide equivalence ratio," Energy, Elsevier, vol. 297(C).
    4. Li, Ruikang & Luo, Zhenmin & Wang, Tao & Cheng, Fangming & Lin, Haifei & Zhu, Xiaochun, 2020. "Effect of initial temperature and H2 addition on explosion characteristics of H2-poor/CH4/air mixtures," Energy, Elsevier, vol. 213(C).
    5. Guo, Liang & Yu, Changyou & Sun, Wanchen & Zhang, Hao & Cheng, Peng & Yan, Yuying & Lin, Shaodian & Zeng, Wenpeng & Zhu, Genan & Jiang, Mengqi, 2024. "Study on effects of ethylene or acetylene addition on the stability of ammonia laminar diffusion flame by optical diagnostics and chemical kinetics," Applied Energy, Elsevier, vol. 362(C).
    6. Baraiya, Nikhil A. & Ramanan, Vikram & Nagarajan, Baladandayuthapani & Vegad, Chetankumar S. & Chakravarthy, S.R., 2023. "Dynamic mode decomposition of syngas (H2/CO) flame during transition to high-frequency instability in turbulent combustor," Energy, Elsevier, vol. 263(PD).
    7. Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).
    8. Valeriy Nikitin & Elena Mikhalchenko & Lyuben Stamov & Nickolay Smirnov & Vilen Azatyan, 2023. "Mathematical Modeling of the Hydrodynamic Instability and Chemical Inhibition of Detonation Waves in a Syngas–Air Mixture," Mathematics, MDPI, vol. 11(24), pages 1-15, December.
    9. Owen Sedej & Eric Mbonimpa & Trevor Sleight & Jeremy Slagley, 2022. "Application of Machine Learning to Predict the Performance of an EMIPG Reactor Using Data from Numerical Simulations," Energies, MDPI, vol. 15(7), pages 1-22, March.
    10. Huadao Xing & Runze Yu & Guangan Xu & Xiaodong Li & Yanyu Qiu & Derong Wang & Bin Li & Lifeng Xie, 2022. "Theoretical and Experimental Investigation of Explosion Characteristics of Hydrogen Explosion in a Closed Vessel," Energies, MDPI, vol. 15(22), pages 1-14, November.
    11. José Manuel Andújar & Francisca Segura & Jesús Rey & Francisco José Vivas, 2022. "Batteries and Hydrogen Storage: Technical Analysis and Commercial Revision to Select the Best Option," Energies, MDPI, vol. 15(17), pages 1-32, August.
    12. Li, Yan & Feng, Yanhui & Zhang, Xinxin & Wu, Chuansong, 2014. "Energy propagation in plasma arc welding with keyhole tracking," Energy, Elsevier, vol. 64(C), pages 1044-1056.
    13. Qi, Beibei & Li, Haitao & Zhai, Fuer & Yu, Minggao & Wei, Chengcai, 2024. "Experimental and numerical study on the explosion characteristics of syngas under different venting conditions," Energy, Elsevier, vol. 290(C).
    14. Jiang, Yiming & Pan, Xuhai & Cai, Qiong & Wang, Zhilei & Klymenko, Oleksiy V. & Hua, Min & Wang, Qingyuan & Zhang, Tao & Li, Yunyu & Jiang, Juncheng, 2022. "Physics and flame morphology of supersonic spontaneously combusting hydrogen spouting into air," Renewable Energy, Elsevier, vol. 196(C), pages 959-972.
    15. Jiajia Liu & Danyang Yu & Ping Li & Xuxu Sun & Xianfeng Chen, 2023. "Characteristics of Explosion Hazards in Methane–Air Mixtures Diluted by Hydrogen," Energies, MDPI, vol. 16(18), pages 1-14, September.
    16. Andrés David Morales Rojas & Sebastián Heredia Quintana & Iván Darío Bedoya Caro, 2024. "Experimental Study of a Homogeneous Charge Compression Ignition Engine Using Hydrogen at High-Altitude Conditions," Sustainability, MDPI, vol. 16(5), pages 1-18, February.
    17. Lars Zigan, 2018. "Overview of Electric Field Applications in Energy and Process Engineering," Energies, MDPI, vol. 11(6), pages 1-33, May.
    18. Zhao, Wenbin & Mi, Shijie & Wu, Haoqing & Zhang, Yaoyuan & Zhang, Qiankun & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2022. "Towards a comprehensive understanding of mode transition between biodiesel-biobutanol dual-fuel ICCI low temperature combustion and conventional CI combustion – Part Ⅰ: Characteristics from medium to ," Energy, Elsevier, vol. 246(C).
    19. Moradi, Ramin & Cioccolanti, Luca & Del Zotto, Luca & Renzi, Massimiliano, 2023. "Comparative sensitivity analysis of micro-scale gas turbine and supercritical CO2 systems with bottoming organic Rankine cycles fed by the biomass gasification for decentralized trigeneration," Energy, Elsevier, vol. 266(C).
    20. Dong, Maifan & Feng, Lele & Qin, Botao, 2023. "Characteristics of coal gasification with CO2 after microwave irradiation based on TGA, FTIR and DFT theory," Energy, Elsevier, vol. 267(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223012094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.