IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v196y2022icp959-972.html
   My bibliography  Save this article

Physics and flame morphology of supersonic spontaneously combusting hydrogen spouting into air

Author

Listed:
  • Jiang, Yiming
  • Pan, Xuhai
  • Cai, Qiong
  • Wang, Zhilei
  • Klymenko, Oleksiy V.
  • Hua, Min
  • Wang, Qingyuan
  • Zhang, Tao
  • Li, Yunyu
  • Jiang, Juncheng

Abstract

Spontaneous ignition resulting from the accidental release of high-pressure hydrogen is an important safety issue, and the self-ignition flame can eventually induce a jet flame. However, the links between the self-ignition flame inside a tube and an external jet flame are unclear. Hence, this paper presents a study on how the self-ignition flame transforms into the jet flame in the near-field region of the nozzle. Effects of release pressure and tube length are investigated. Changes in release conditions can lead to changes in the flow characteristics of the self-combustible jet at the nozzle. Results show that the difference in the flow parameters is manifested in three aspects, which directly contribute to the diversity of transition forms. The expansion processes and shock structure govern the flame transition. The expansion process consists of two typical stages, which lead to two different flame morphologies. Besides, the presence of discontinuous surfaces in the shock wave structure can cause the self-ignition flame to extinguish or re-ignition in some transition processes, resulting in the flame appearing in different zones during different transitions. Finally, five forms of flame transition are proposed and their formation reasons are analyzed. Dominant factors and links between different transitions are eventually identified.

Suggested Citation

  • Jiang, Yiming & Pan, Xuhai & Cai, Qiong & Wang, Zhilei & Klymenko, Oleksiy V. & Hua, Min & Wang, Qingyuan & Zhang, Tao & Li, Yunyu & Jiang, Juncheng, 2022. "Physics and flame morphology of supersonic spontaneously combusting hydrogen spouting into air," Renewable Energy, Elsevier, vol. 196(C), pages 959-972.
  • Handle: RePEc:eee:renene:v:196:y:2022:i:c:p:959-972
    DOI: 10.1016/j.renene.2022.06.153
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122009946
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.06.153?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shen, Xiaobo & Xu, Jiaying & Wen, Jennifer X., 2021. "Phenomenological characteristics of hydrogen/air premixed flame propagation in closed rectangular channels," Renewable Energy, Elsevier, vol. 174(C), pages 606-615.
    2. Liu, Xiong & Godbole, Ajit & Lu, Cheng & Michal, Guillaume & Venton, Philip, 2014. "Source strength and dispersion of CO2 releases from high-pressure pipelines: CFD model using real gas equation of state," Applied Energy, Elsevier, vol. 126(C), pages 56-68.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chao Pu & Zhenjian Liu & Ge Pu, 2022. "On the Factors of Impact Pressure in Supercritical CO 2 Phase-Transition Blasting—A Numerical Study," Energies, MDPI, vol. 15(22), pages 1-15, November.
    2. Shen, Xiaobo & Zhang, Zhenwu & Dou, Zengguo & Cong, Beihua & Xiao, Qiuping & Liu, Haifeng, 2022. "Premixed syngas/air combustion in closed ducts with varied aspect ratios and initial pressures," Energy, Elsevier, vol. 254(PC).
    3. Shen, Xiaobo & Zhang, Zhenwu & Dou, Zengguo & Zhang, Chao, 2021. "Premixed CO/air combustion in a closed duct with inhibition," Energy, Elsevier, vol. 230(C).
    4. Lin, Chih-Wei & Nazeri, Mahmoud & Bhattacharji, Ayan & Spicer, George & Maroto-Valer, M. Mercedes, 2016. "Apparatus and method for calibrating a Coriolis mass flow meter for carbon dioxide at pressure and temperature conditions represented to CCS pipeline operations," Applied Energy, Elsevier, vol. 165(C), pages 759-764.
    5. Jiajia Liu & Danyang Yu & Ping Li & Xuxu Sun & Xianfeng Chen, 2023. "Characteristics of Explosion Hazards in Methane–Air Mixtures Diluted by Hydrogen," Energies, MDPI, vol. 16(18), pages 1-14, September.
    6. Wu, Pengzhi & Liu, Changchun & Wen, Hu & Luo, Zhenmin & Fan, Shixing & Mi, Wansheng, 2023. "Experimental investigation of jet impingement during accidental release of liquid CO2," Energy, Elsevier, vol. 279(C).
    7. Shi, Jihao & Li, Junjie & Usmani, Asif Sohail & Zhu, Yuan & Chen, Guoming & Yang, Dongdong, 2021. "Probabilistic real-time deep-water natural gas hydrate dispersion modeling by using a novel hybrid deep learning approach," Energy, Elsevier, vol. 219(C).
    8. Guo, Xiaolu & Yan, Xingqing & Yu, Jianliang & Zhang, Yongchun & Chen, Shaoyun & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander & Proust, Christophe, 2016. "Under-expanded jets and dispersion in supercritical CO2 releases from a large-scale pipeline," Applied Energy, Elsevier, vol. 183(C), pages 1279-1291.
    9. Elshahomi, Alhoush & Lu, Cheng & Michal, Guillaume & Liu, Xiong & Godbole, Ajit & Venton, Philip, 2015. "Decompression wave speed in CO2 mixtures: CFD modelling with the GERG-2008 equation of state," Applied Energy, Elsevier, vol. 140(C), pages 20-32.
    10. Matteo Vitali & Cristina Zuliani & Francesco Corvaro & Barbara Marchetti & Alessandro Terenzi & Fabrizio Tallone, 2021. "Risks and Safety of CO 2 Transport via Pipeline: A Review of Risk Analysis and Modeling Approaches for Accidental Releases," Energies, MDPI, vol. 14(15), pages 1-17, July.
    11. Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, vol. 11(9), pages 1-45, September.
    12. Teng, Lin & Li, Yuxing & Hu, Qihui & Zhang, Datong & Ye, Xiao & Gu, Shuaiwei & Wang, Cailin, 2018. "Experimental study of near-field structure and thermo-hydraulics of supercritical CO2 releases," Energy, Elsevier, vol. 157(C), pages 806-814.
    13. Hong, Bingyuan & Shao, Bowen & Guo, Jian & Fu, Jianzhong & Li, Cuicui & Zhu, Baikang, 2023. "Dynamic Bayesian network risk probability evolution for third-party damage of natural gas pipelines," Applied Energy, Elsevier, vol. 333(C).
    14. Bin Liu & Xiong Liu & Cheng Lu & Ajit Godbole & Guillaume Michal & Anh Kiet Tieu, 2017. "Multi‐phase decompression modeling of CO 2 pipelines," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(4), pages 665-679, August.
    15. Liu, Xiong & Godbole, Ajit & Lu, Cheng & Michal, Guillaume & Linton, Valerie, 2019. "Investigation of the consequence of high-pressure CO2 pipeline failure through experimental and numerical studies," Applied Energy, Elsevier, vol. 250(C), pages 32-47.
    16. Dou, Zengguo & Shen, Xiaobo & Zhang, Zhenwu & Zhou, Feng & Ma, Yunsheng & Zou, Xiong & Liu, Haifeng & Wang, Fuchen, 2023. "Effects of aspect ratio and initial pressure on asymmetric flame and flame instability of premixed CO/air," Energy, Elsevier, vol. 278(PA).
    17. Guo, Xiaolu & Yan, Xingqing & Yu, Jianliang & Zhang, Yongchun & Chen, Shaoyun & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander & Proust, Christophe, 2016. "Pressure response and phase transition in supercritical CO2 releases from a large-scale pipeline," Applied Energy, Elsevier, vol. 178(C), pages 189-197.
    18. Zhou, Mi & Ma, Shuhao & Zhang, Naiqiang, 2023. "Experimental investigation of LPG-releasing processes with varied damage sizes on a pressurized vessel," Energy, Elsevier, vol. 276(C).
    19. Liu, Bin & Liu, Xiong & Lu, Cheng & Godbole, Ajit & Michal, Guillaume & Tieu, Anh Kiet, 2018. "A CFD decompression model for CO2 mixture and the influence of non-equilibrium phase transition," Applied Energy, Elsevier, vol. 227(C), pages 516-524.
    20. Dall’Acqua, D. & Terenzi, A. & Leporini, M. & D’Alessandro, V. & Giacchetta, G. & Marchetti, B., 2017. "A new tool for modelling the decompression behaviour of CO2 with impurities using the Peng-Robinson equation of state," Applied Energy, Elsevier, vol. 206(C), pages 1432-1445.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:196:y:2022:i:c:p:959-972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.