IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6132-d643527.html
   My bibliography  Save this article

Optimal Operation of Combined Energy and Water Systems for Community Resilience against Natural Disasters

Author

Listed:
  • Govind Joshi

    (Electrical Engineering Department, Colorado School of Mines, Golden, CO 80401, USA)

  • Salman Mohagheghi

    (Electrical Engineering Department, Colorado School of Mines, Golden, CO 80401, USA)

Abstract

One of the most critical challenges for modern power systems is to reliably supply electricity to its consumers during and in the aftermath of natural disasters. As our dependence on electrical power has increased over the years, long-term power outages can lead to devastating impacts on affected communities. Furthermore, power outages can halt the operation of water treatment plants, leading to shortages in clean water, which is essential during post-disaster recovery. One way to address this is to temporarily reconfigure power and water networks into localized networks, i.e., electric microgrids and water micro-nets, that utilize local resources to supply local demand independently of the main power grid and/or water network. Utilizing distributed energy resources such as wind and solar and treating wastewater locally for potable reuse can provide the operational flexibility for such systems to operate sustainably. However, due to uncertainties in both renewable energy generation and electric/water consumption, ensuring sustainable operation is a challenging task. In this paper, an optimal operational strategy is proposed for an islanded microgrid/micro-net, considering the stochastic nature of renewable energy resources, electric demand, and water demand. An energy storage system is modeled to address the uncertainty in power generation and demand, in conjunction with local water storage and wastewater treatment to accommodate variable water demands. A two-stage stochastic programming model is formulated and solved to determine an optimal operation strategy for the combined system.

Suggested Citation

  • Govind Joshi & Salman Mohagheghi, 2021. "Optimal Operation of Combined Energy and Water Systems for Community Resilience against Natural Disasters," Energies, MDPI, vol. 14(19), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6132-:d:643527
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6132/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6132/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ioannou, Anastasia & Fuzuli, Gulistiani & Brennan, Feargal & Yudha, Satya Widya & Angus, Andrew, 2019. "Multi-stage stochastic optimization framework for power generation system planning integrating hybrid uncertainty modelling," Energy Economics, Elsevier, vol. 80(C), pages 760-776.
    2. Mehrjerdi, Hasan, 2020. "Modeling and optimization of an island water-energy nexus powered by a hybrid solar-wind renewable system," Energy, Elsevier, vol. 197(C).
    3. Hao Liang & Weihua Zhuang, 2014. "Stochastic Modeling and Optimization in a Microgrid: A Survey," Energies, MDPI, vol. 7(4), pages 1-24, March.
    4. Tuohy, Aidan & Meibom, Peter & Denny, Eleanor & O'Malley, Mark, 2009. "Unit commitment for systems with significant wind penetration," MPRA Paper 34849, University Library of Munich, Germany.
    5. Alice Fothergill & Lori Peek, 2004. "Poverty and Disasters in the United States: A Review of Recent Sociological Findings," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 32(1), pages 89-110, May.
    6. Ludwig Kuznia & Bo Zeng & Grisselle Centeno & Zhixin Miao, 2013. "Stochastic optimization for power system configuration with renewable energy in remote areas," Annals of Operations Research, Springer, vol. 210(1), pages 411-432, November.
    7. Christos Makropoulos & David Butler, 2010. "Distributed Water Infrastructure for Sustainable Communities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2795-2816, September.
    8. Santhosh, Apoorva & Farid, Amro M. & Youcef-Toumi, Kamal, 2014. "Real-time economic dispatch for the supply side of the energy-water nexus," Applied Energy, Elsevier, vol. 122(C), pages 42-52.
    9. Parra, David & Norman, Stuart A. & Walker, Gavin S. & Gillott, Mark, 2016. "Optimum community energy storage system for demand load shifting," Applied Energy, Elsevier, vol. 174(C), pages 130-143.
    10. Ilan Noy & Rio Yonson, 2018. "Economic Vulnerability and Resilience to Natural Hazards: A Survey of Concepts and Measurements," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
    11. Menke, Ruben & Abraham, Edo & Parpas, Panos & Stoianov, Ivan, 2016. "Demonstrating demand response from water distribution system through pump scheduling," Applied Energy, Elsevier, vol. 170(C), pages 377-387.
    12. Parra, David & Swierczynski, Maciej & Stroe, Daniel I. & Norman, Stuart.A. & Abdon, Andreas & Worlitschek, Jörg & O’Doherty, Travis & Rodrigues, Lucelia & Gillott, Mark & Zhang, Xiaojin & Bauer, Chris, 2017. "An interdisciplinary review of energy storage for communities: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 730-749.
    13. Kai Huang & Shabbir Ahmed, 2009. "The Value of Multistage Stochastic Programming in Capacity Planning Under Uncertainty," Operations Research, INFORMS, vol. 57(4), pages 893-904, August.
    14. Parkinson, Simon C. & Makowski, Marek & Krey, Volker & Sedraoui, Khaled & Almasoud, Abdulrahman H. & Djilali, Ned, 2018. "A multi-criteria model analysis framework for assessing integrated water-energy system transformation pathways," Applied Energy, Elsevier, vol. 210(C), pages 477-486.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Challenges, opportunities, and strategies for undertaking integrated precinct-scale energy–water system planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    3. Zhang, Weiping & Maleki, Akbar, 2022. "Modeling and optimization of a stand-alone desalination plant powered by solar/wind energies based on back-up systems using a hybrid algorithm," Energy, Elsevier, vol. 254(PC).
    4. Stefan Blomqvist & Lina La Fleur & Shahnaz Amiri & Patrik Rohdin & Louise Ödlund (former Trygg), 2019. "The Impact on System Performance When Renovating a Multifamily Building Stock in a District Heated Region," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    5. Roberts, Mike B. & Bruce, Anna & MacGill, Iain, 2019. "Impact of shared battery energy storage systems on photovoltaic self-consumption and electricity bills in apartment buildings," Applied Energy, Elsevier, vol. 245(C), pages 78-95.
    6. Shin, Joohyun & Lee, Jay H. & Realff, Matthew J., 2017. "Operational planning and optimal sizing of microgrid considering multi-scale wind uncertainty," Applied Energy, Elsevier, vol. 195(C), pages 616-633.
    7. Kalkbrenner, Bernhard J., 2019. "Residential vs. community battery storage systems – Consumer preferences in Germany," Energy Policy, Elsevier, vol. 129(C), pages 1355-1363.
    8. Ebrahimi, Mahyar, 2020. "Storing electricity as thermal energy at community level for demand side management," Energy, Elsevier, vol. 193(C).
    9. Muhanji, Steffi Olesi & Barrows, Clayton & Macknick, Jordan & Farid, Amro M., 2021. "An enterprise control assessment case study of the energy–water nexus for the ISO New England system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. Koirala, Binod Prasad & van Oost, Ellen & van der Windt, Henny, 2018. "Community energy storage: A responsible innovation towards a sustainable energy system?," Applied Energy, Elsevier, vol. 231(C), pages 570-585.
    11. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Optimisation modelling tools and solving techniques for integrated precinct-scale energy–water system planning," Applied Energy, Elsevier, vol. 318(C).
    12. Scheller, Fabian & Burkhardt, Robert & Schwarzeit, Robert & McKenna, Russell & Bruckner, Thomas, 2020. "Competition between simultaneous demand-side flexibility options: the case of community electricity storage systems," Applied Energy, Elsevier, vol. 269(C).
    13. Kim, Dowon & Ryu, Heelang & Lee, Jiwoong & Kim, Kyoung-Kuk, 2022. "Balancing risk: Generation expansion planning under climate mitigation scenarios," European Journal of Operational Research, Elsevier, vol. 297(2), pages 665-679.
    14. Rituparna Kaushik & Yashobanta Parida & Ravikiran Naik, 2024. "Human development and disaster mortality: evidence from India," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.
    15. Parra, David & Patel, Martin K., 2019. "The nature of combining energy storage applications for residential battery technology," Applied Energy, Elsevier, vol. 239(C), pages 1343-1355.
    16. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Multi-objective optimization of energy arbitrage in community energy storage systems using different battery technologies," Applied Energy, Elsevier, vol. 239(C), pages 356-372.
    17. Sui, Quan & Wei, Fanrong & Zhang, Rui & Lin, Xiangning & Tong, Ning & Wang, Zhixun & Li, Zhengtian, 2019. "Optimal use of electric energy oriented water-electricity combined supply system for the building-integrated-photovoltaics community," Applied Energy, Elsevier, vol. 247(C), pages 549-558.
    18. Fabian Scheller & Robert Burkhardt & Robert Schwarzeit & Russell McKenna & Thomas Bruckner, 2020. "Competition between simultaneous demand-side flexibility options: The case of community electricity storage systems," Papers 2011.05809, arXiv.org.
    19. Haleh Moghaddasi & Charles Culp & Jorge Vanegas, 2021. "Net Zero Energy Communities: Integrated Power System, Building and Transport Sectors," Energies, MDPI, vol. 14(21), pages 1-33, October.
    20. Abinash Bhattachan & Matthew D. Jurjonas & Priscilla R. Morris & Paul J. Taillie & Lindsey S. Smart & Ryan E. Emanuel & Erin L. Seekamp, 2019. "Linking residential saltwater intrusion risk perceptions to physical exposure of climate change impacts in rural coastal communities of North Carolina," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1277-1295, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6132-:d:643527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.