IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i3p1795-1818.html
   My bibliography  Save this article

Risk-Averse Stochastic Programming vs. Adaptive Robust Optimization: A Virtual Power Plant Application

Author

Listed:
  • Ricardo M. Lima

    (Computer, Electrical, and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia)

  • Antonio J. Conejo

    (Department of Integrated Systems Engineering, and Department of Electrical and Computer Engineering, The Ohio State University, Ohio 43210)

  • Loïc Giraldi

    (Commissariat à l’Énergie Atomique et aux Énergies Alternatives (French Alternative Energies and Atomic Energy Commission), Direction des Énergies (Energy division), Institut de REcherche sur les Systèmes Nucléaires pour la production d’Énergie bas carbone (Research Institute for Nuclear Systems for Low Carbon Energy Production), Département d’Études des Combustibles (Fuel department), Cadarache F-13108 Saint-Paul-Lez-Durance, France)

  • Olivier Le Maître

    (Centre de Mathématiques Appliquées, Centre National de la Recherche Scientifique, Inria, Ecole Polytechnique, Palaiseau 91128, France)

  • Ibrahim Hoteit

    (Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia)

  • Omar M. Knio

    (Computer, Electrical, and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia)

Abstract

This paper compares risk-averse optimization methods to address the self-scheduling and market involvement of a virtual power plant (VPP). The decision-making problem of the VPP involves uncertainty in the wind speed and electricity price forecast. We focus on two methods: risk-averse two-stage stochastic programming (SP) and two-stage adaptive robust optimization (ARO). We investigate both methods concerning formulations, uncertainty and risk, decomposition algorithms, and their computational performance. To quantify the risk in SP, we use the conditional value at risk (CVaR) because it can resemble a worst-case measure, which naturally links to ARO. We use two efficient implementations of the decomposition algorithms for SP and ARO; we assess (1) the operational results regarding first-stage decision variables, estimate of expected profit, and estimate of the CVaR of the profit and (2) their performance taking into consideration different sample sizes and risk management parameters. The results show that similar first-stage solutions are obtained depending on the risk parameterizations used in each formulation. Computationally, we identified three cases: (1) SP with a sample of 500 elements is competitive with ARO; (2) SP performance degrades comparing to the first case and ARO fails to converge in four out of five risk parameters; (3) SP fails to converge, whereas ARO converges in three out of five risk parameters. Overall, these performance cases depend on the combined effect of deterministic and uncertain data and risk parameters. Summary of Contribution: The work presented in this manuscript is at the intersection of operations research and computer science, which are intrinsically related with the scope and mission of IJOC. From the operations research perspective, two methodologies for optimization under uncertainty are studied: risk-averse stochastic programming and adaptive robust optimization. These methodologies are illustrated using an energy scheduling problem. The study includes a comparison from the point of view of uncertainty modeling, formulations, decomposition methods, and analysis of solutions. From the computer science perspective, a careful implementation of decomposition methods using parallelization techniques and a sample average approximation methodology was done . A detailed comparison of the computational performance of both methods is performed. Finally, the conclusions allow establishing links between two alternative methodologies in operations research: stochastic programming and robust optimization.

Suggested Citation

  • Ricardo M. Lima & Antonio J. Conejo & Loïc Giraldi & Olivier Le Maître & Ibrahim Hoteit & Omar M. Knio, 2022. "Risk-Averse Stochastic Programming vs. Adaptive Robust Optimization: A Virtual Power Plant Application," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1795-1818, May.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:3:p:1795-1818
    DOI: 10.1287/ijoc.2022.1157
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2022.1157
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2022.1157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Botterud, Audun & Kristiansen, Tarjei & Ilic, Marija D., 2010. "The relationship between spot and futures prices in the Nord Pool electricity market," Energy Economics, Elsevier, vol. 32(5), pages 967-978, September.
    2. Tajeddini, Mohammad Amin & Rahimi-Kian, Ashkan & Soroudi, Alireza, 2014. "Risk averse optimal operation of a virtual power plant using two stage stochastic programming," Energy, Elsevier, vol. 73(C), pages 958-967.
    3. Lima, Ricardo M. & Novais, Augusto Q. & Conejo, Antonio J., 2015. "Weekly self-scheduling, forward contracting, and pool involvement for an electricity producer. An adaptive robust optimization approach," European Journal of Operational Research, Elsevier, vol. 240(2), pages 457-475.
    4. Dimitris Bertsimas & Romy Shioda, 2009. "Algorithm for cardinality-constrained quadratic optimization," Computational Optimization and Applications, Springer, vol. 43(1), pages 1-22, May.
    5. Wim Ackooij, 2017. "A comparison of four approaches from stochastic programming for large-scale unit-commitment," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 119-147, March.
    6. Gregory, Christine & Darby-Dowman, Ken & Mitra, Gautam, 2011. "Robust optimization and portfolio selection: The cost of robustness," European Journal of Operational Research, Elsevier, vol. 212(2), pages 417-428, July.
    7. Gorissen, Bram L. & Yanıkoğlu, İhsan & den Hertog, Dick, 2015. "A practical guide to robust optimization," Omega, Elsevier, vol. 53(C), pages 124-137.
    8. Juan M. Morales & Antonio J. Conejo & Henrik Madsen & Pierre Pinson & Marco Zugno, 2014. "Integrating Renewables in Electricity Markets," International Series in Operations Research and Management Science, Springer, edition 127, number 978-1-4614-9411-9, December.
    9. Benth, Fred Espen & Cartea, Álvaro & Kiesel, Rüdiger, 2008. "Pricing forward contracts in power markets by the certainty equivalence principle: Explaining the sign of the market risk premium," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2006-2021, October.
    10. Benth, Fred Espen & Koekebakker, Steen, 2008. "Stochastic modeling of financial electricity contracts," Energy Economics, Elsevier, vol. 30(3), pages 1116-1157, May.
    11. Deng, S.J. & Oren, S.S., 2006. "Electricity derivatives and risk management," Energy, Elsevier, vol. 31(6), pages 940-953.
    12. Danjue Shang & Victor Kuzmenko & Stan Uryasev, 2018. "Cash flow matching with risks controlled by buffered probability of exceedance and conditional value-at-risk," Annals of Operations Research, Springer, vol. 260(1), pages 501-514, January.
    13. Pandžić, Hrvoje & Morales, Juan M. & Conejo, Antonio J. & Kuzle, Igor, 2013. "Offering model for a virtual power plant based on stochastic programming," Applied Energy, Elsevier, vol. 105(C), pages 282-292.
    14. Weron, Rafał & Zator, Michał, 2014. "Revisiting the relationship between spot and futures prices in the Nord Pool electricity market," Energy Economics, Elsevier, vol. 44(C), pages 178-190.
    15. Xu Andy Sun & Antonio J. Conejo, 2021. "Adaptive Robust Optimization," International Series in Operations Research & Management Science, in: Robust Optimization in Electric Energy Systems, chapter 0, pages 95-129, Springer.
    16. Kristiansen, Tarjei, 2007. "Pricing of monthly forward contracts in the Nord Pool market," Energy Policy, Elsevier, vol. 35(1), pages 307-316, January.
    17. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    18. Jiang, Ruiwei & Zhang, Muhong & Li, Guang & Guan, Yongpei, 2014. "Two-stage network constrained robust unit commitment problem," European Journal of Operational Research, Elsevier, vol. 234(3), pages 751-762.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Algieri, Bernardina & Leccadito, Arturo & Tunaru, Diana, 2021. "Risk premia in electricity derivatives markets," Energy Economics, Elsevier, vol. 100(C).
    2. Shabanzadeh, Morteza & Sheikh-El-Eslami, Mohammad-Kazem & Haghifam, Mahmoud-Reza, 2016. "A medium-term coalition-forming model of heterogeneous DERs for a commercial virtual power plant," Applied Energy, Elsevier, vol. 169(C), pages 663-681.
    3. Weron, Rafał & Zator, Michał, 2014. "Revisiting the relationship between spot and futures prices in the Nord Pool electricity market," Energy Economics, Elsevier, vol. 44(C), pages 178-190.
    4. Pawel Maryniak & Stefan Trueck & Rafal Weron, 2016. "Carbon pricing, forward risk premiums and pass-through rates in Australian electricity futures markets," HSC Research Reports HSC/16/10, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    5. Bevin-McCrimmon, Fergus & Diaz-Rainey, Ivan & McCarten, Matthew & Sise, Greg, 2018. "Liquidity and risk premia in electricity futures," Energy Economics, Elsevier, vol. 75(C), pages 503-517.
    6. Tanrisever, Fehmi & Derinkuyu, Kursad & Jongen, Geert, 2015. "Organization and functioning of liberalized electricity markets: An overview of the Dutch market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1363-1374.
    7. Maryniak, Paweł & Trück, Stefan & Weron, Rafał, 2019. "Carbon pricing and electricity markets — The case of the Australian Clean Energy Bill," Energy Economics, Elsevier, vol. 79(C), pages 45-58.
    8. Zhang, Yue & Farnoosh, Arash, 2019. "Analyzing the dynamic impact of electricity futures on revenue and risk of renewable energy in China," Energy Policy, Elsevier, vol. 132(C), pages 678-690.
    9. George Daskalakis, Lazaros Symeonidis, Raphael N. Markellos, 2015. "Electricity futures prices in an emissions constrained economy: Evidence from European power markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    10. Wei Wei & Asger Lunde, 2020. "Identifying Risk Factors and Their Premia: A Study on Electricity Prices," Monash Econometrics and Business Statistics Working Papers 10/20, Monash University, Department of Econometrics and Business Statistics.
    11. Zhang Yue & Arash Farnoosh, 2018. "Analysing the Dynamic Impact of Electricity Futures on Revenue and Risks of Renewable Energy in China," Working Papers hal-03188814, HAL.
    12. Fleten, Stein-Erik & Hagen, Liv Aune & Nygård, Maria Tandberg & Smith-Sivertsen, Ragnhild & Sollie, Johan M., 2015. "The overnight risk premium in electricity forward contracts," Energy Economics, Elsevier, vol. 49(C), pages 293-300.
    13. Claudio Monteiro & L. Alfredo Fernandez-Jimenez & Ignacio J. Ramirez-Rosado, 2020. "Predictive Trading Strategy for Physical Electricity Futures," Energies, MDPI, vol. 13(14), pages 1-24, July.
    14. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    15. Baringo, Luis & Boffino, Luigi & Oggioni, Giorgia, 2020. "Robust expansion planning of a distribution system with electric vehicles, storage and renewable units," Applied Energy, Elsevier, vol. 265(C).
    16. Bunn, Derek W. & Chen, Dipeng, 2013. "The forward premium in electricity futures," Journal of Empirical Finance, Elsevier, vol. 23(C), pages 173-186.
    17. Lyu, Chenyan & Do, Hung Xuan & Nepal, Rabindra & Jamasb, Tooraj, 2024. "Volatility spillovers and carbon price in the Nordic wholesale electricity markets," Energy Economics, Elsevier, vol. 134(C).
    18. Jacobs, Kris & Li, Yu & Pirrong, Craig, 2022. "Supply, demand, and risk premiums in electricity markets," Journal of Banking & Finance, Elsevier, vol. 135(C).
    19. Woo, C.K. & Zarnikau, J. & Moore, J. & Horowitz, I., 2011. "Wind generation and zonal-market price divergence: Evidence from Texas," Energy Policy, Elsevier, vol. 39(7), pages 3928-3938, July.
    20. Matthew Norton & Valentyn Khokhlov & Stan Uryasev, 2021. "Calculating CVaR and bPOE for common probability distributions with application to portfolio optimization and density estimation," Annals of Operations Research, Springer, vol. 299(1), pages 1281-1315, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:3:p:1795-1818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.