IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i5p773-d209083.html
   My bibliography  Save this article

Analyzing Load Profiles of Energy Consumption to Infer Household Characteristics Using Smart Meters

Author

Listed:
  • Muhammad Fahim

    (Institute of Information Systems, Innopolis University, Innopolis 420500, Republic of Tatarstan, Russia)

  • Alberto Sillitti

    (Institute of Information Systems, Innopolis University, Innopolis 420500, Republic of Tatarstan, Russia)

Abstract

The increasing penetration of smart meters provides an excellent opportunity to monitor and analyze energy consumption in residential buildings. In this paper, we propose a framework to process the observed profiles of energy consumption to infer the household characteristics in residential buildings. Such characteristics can be used for improving resource allocation and for an efficient energy management that will ultimately contribute to reducing carbon dioxide (CO 2 ) emission. Our approach is based on automated extraction of features from univariate time-series data and development of a model through a variant of the decision trees technique (i.e., ensemble learning mechanism) random forest. We process and analyzed energy consumption data to answer four primitive questions. To evaluate the approach, we performed experiments on publicly available datasets. Our experiments show a precision of 82% and a recall of 81% in inferring household characteristics.

Suggested Citation

  • Muhammad Fahim & Alberto Sillitti, 2019. "Analyzing Load Profiles of Energy Consumption to Infer Household Characteristics Using Smart Meters," Energies, MDPI, vol. 12(5), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:773-:d:209083
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/5/773/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/5/773/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peng Du & Antony Wood & Brent Stephens, 2016. "Empirical Operational Energy Analysis of Downtown High-Rise vs. Suburban Low-Rise Lifestyles: A Chicago Case Study," Energies, MDPI, vol. 9(6), pages 1-27, June.
    2. Viegas, Joaquim L. & Vieira, Susana M. & Melício, R. & Mendes, V.M.F. & Sousa, João M.C., 2016. "Classification of new electricity customers based on surveys and smart metering data," Energy, Elsevier, vol. 107(C), pages 804-817.
    3. McLoughlin, Fintan & Duffy, Aidan & Conlon, Michael, 2013. "Evaluation of time series techniques to characterise domestic electricity demand," Energy, Elsevier, vol. 50(C), pages 120-130.
    4. du Preez, Johann & Witt, Stephen F., 2003. "Univariate versus multivariate time series forecasting: an application to international tourism demand," International Journal of Forecasting, Elsevier, vol. 19(3), pages 435-451.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao-Yu Zhang & Stefanie Kuenzel & José-Rodrigo Córdoba-Pachón & Chris Watkins, 2020. "Privacy-Functionality Trade-Off: A Privacy-Preserving Multi-Channel Smart Metering System," Energies, MDPI, vol. 13(12), pages 1-30, June.
    2. Corina Pelau & Carmen Acatrinei, 2019. "The Paradox of Energy Consumption Decrease in the Transition Period towards a Digital Society," Energies, MDPI, vol. 12(8), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
    2. Satre-Meloy, Aven & Diakonova, Marina & Grünewald, Philipp, 2020. "Cluster analysis and prediction of residential peak demand profiles using occupant activity data," Applied Energy, Elsevier, vol. 260(C).
    3. Roberts, Mike B. & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2019. "Characterisation of Australian apartment electricity demand and its implications for low-carbon cities," Energy, Elsevier, vol. 180(C), pages 242-257.
    4. Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
    5. Nyoni, Thabani & Mutongi, Chipo, 2019. "Modeling and forecasting carbon dioxide emissions in China using Autoregressive Integrated Moving Average (ARIMA) models," MPRA Paper 93984, University Library of Munich, Germany.
    6. Niematallah Elamin & Mototsugu Fukushige, 2016. "Forecasting extreme seasonal tourism demand," Discussion Papers in Economics and Business 16-23, Osaka University, Graduate School of Economics.
    7. Ana Mafalda Matos & João M. P. Q. Delgado & Ana Sofia Guimarães, 2022. "Energy-Efficiency Passive Strategies for Mediterranean Climate: An Overview," Energies, MDPI, vol. 15(7), pages 1-20, April.
    8. Rongheng Lin & Budan Wu & Yun Su, 2018. "An Adaptive Weighted Pearson Similarity Measurement Method for Load Curve Clustering," Energies, MDPI, vol. 11(9), pages 1-17, September.
    9. Nyoni, Thabani, 2019. "Forecasting the population of Brazil using the Box-Jenkins ARIMA approach," MPRA Paper 92437, University Library of Munich, Germany.
    10. Gianluca Trotta & Kirsten Gram-Hanssen & Pernille Lykke Jørgensen, 2020. "Heterogeneity of Electricity Consumption Patterns in Vulnerable Households," Energies, MDPI, vol. 13(18), pages 1-17, September.
    11. Marcos Álvarez-Díaz & Manuel González-Gómez & María Soledad Otero-Giráldez, 2018. "Forecasting International Tourism Demand Using a Non-Linear Autoregressive Neural Network and Genetic Programming," Forecasting, MDPI, vol. 1(1), pages 1-17, September.
    12. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & Pep Salas & José Matas, 2020. "A Comprehensive Model for the Design of a Microgrid under Regulatory Constraints Using Synthetical Data Generation and Stochastic Optimization," Energies, MDPI, vol. 13(21), pages 1-26, October.
    13. Nyoni, Thabani, 2019. "Where is Eritrea going in terms of population growth? Insights from the ARIMA approach," MPRA Paper 92435, University Library of Munich, Germany.
    14. Stephen F. Witt & Haiyan Song & Stephen Wanhill, 2004. "Forecasting Tourism-Generated Employment: The Case of Denmark," Tourism Economics, , vol. 10(2), pages 167-176, June.
    15. Mavri, Maria & Angelis, Vasilis, 2009. "Forecasting the Growth of e-Tourism Sector: The Case Study of Mediterranean Countries," MPRA Paper 25439, University Library of Munich, Germany, revised 25 Aug 2009.
    16. Li, Lanlan & Ming, Huayang & Fu, Weizhong & Shi, Quan & Yu, Shiwei, 2021. "Exploring household natural gas consumption patterns and their influencing factors: An integrated clustering and econometric method," Energy, Elsevier, vol. 224(C).
    17. Nyoni, Thabani, 2019. "Addressing the population question in Mexico: A Box-Jenkins ARIMA approach," MPRA Paper 92440, University Library of Munich, Germany.
    18. Valdes, Javier & Masip Macia, Yunesky & Dorner, Wolfgang & Ramirez Camargo, Luis, 2021. "Unsupervised grouping of industrial electricity demand profiles: Synthetic profiles for demand-side management applications," Energy, Elsevier, vol. 215(PA).
    19. Chévez, Pedro Joaquín & Martini, Irene & Discoli, Carlos, 2019. "Methodology developed for the construction of an urban-energy diagnosis aimed to assess alternative scenarios: An intra-urban approach to foster cities’ sustainability," Applied Energy, Elsevier, vol. 237(C), pages 751-778.
    20. van der Meer, D.W. & Shepero, M. & Svensson, A. & Widén, J. & Munkhammar, J., 2018. "Probabilistic forecasting of electricity consumption, photovoltaic power generation and net demand of an individual building using Gaussian Processes," Applied Energy, Elsevier, vol. 213(C), pages 195-207.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:773-:d:209083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.