IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v269y2023ics0360544223002013.html
   My bibliography  Save this article

Hydrodynamic performance analysis of a new hybrid wave energy converter system using OpenFOAM

Author

Listed:
  • Masoomi, Mobin
  • Sarlak, Hamid
  • Rezanejad, Kourosh

Abstract

In this research study, a newly proposed hybrid device of Wave Energy Converters (WEC) is investigated by considering computational fluid dynamic (CFD)-based numerical wave tanks (NWTs). The open-source CFD code solver, OpenFOAM (Open Field Operation and Manipulation) is implemented, which is numerically solved the Reynolds-averaged Navier–Stokes (RANS) equations to simulate the two-phase flow. The hybrid system consists of an Oscillating Water Column (OWC) and a point absorber (Wavestar) device installed in a shared platform. The main goal is to recognize how wave diffractions caused by the adjacent floating body could affect the rate of power absorption by the Fixed-OWC. This aim is followed by a 2D numerical analysis of three different installation configurations, variable intervals between the Wavestars' buoy and the Fixed-OWCs' front wall, in four different wavelengths with and without Power Take-Off (PTO). Finally, the efficiency characteristics of the integrated system such as free surface velocity and air pressure within the chamber, besides floating body motions are investigated and compared for the hybrid system. Although the overall assessment for 28 different case studies reveals an efficiency reduction in some cases, the superiority of this hybrid plan is recording several incremental efficiency rates.

Suggested Citation

  • Masoomi, Mobin & Sarlak, Hamid & Rezanejad, Kourosh, 2023. "Hydrodynamic performance analysis of a new hybrid wave energy converter system using OpenFOAM," Energy, Elsevier, vol. 269(C).
  • Handle: RePEc:eee:energy:v:269:y:2023:i:c:s0360544223002013
    DOI: 10.1016/j.energy.2023.126807
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223002013
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126807?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ransley, E.J. & Greaves, D.M. & Raby, A. & Simmonds, D. & Jakobsen, M.M. & Kramer, M., 2017. "RANS-VOF modelling of the Wavestar point absorber," Renewable Energy, Elsevier, vol. 109(C), pages 49-65.
    2. Carpintero Moreno, Efrain & Stansby, Peter, 2019. "The 6-float wave energy converter M4: Ocean basin tests giving capture width, response and energy yield for several sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 307-318.
    3. Babarit, A., 2015. "A database of capture width ratio of wave energy converters," Renewable Energy, Elsevier, vol. 80(C), pages 610-628.
    4. Zhang, Hengming & Zhou, Binzhen & Vogel, Christopher & Willden, Richard & Zang, Jun & Geng, Jing, 2020. "Hydrodynamic performance of a dual-floater hybrid system combining a floating breakwater and an oscillating-buoy type wave energy converter," Applied Energy, Elsevier, vol. 259(C).
    5. John Ashlin, S. & Sundar, V. & Sannasiraj, S.A., 2016. "Effects of bottom profile of an oscillating water column device on its hydrodynamic characteristics," Renewable Energy, Elsevier, vol. 96(PA), pages 341-353.
    6. Mobin Masoomi & Mahdi Yousefifard & Amir Mosavi, 2021. "Efficiency Assessment of an Amended Oscillating Water Column Using OpenFOAM," Sustainability, MDPI, vol. 13(10), pages 1-23, May.
    7. Coiro, Domenico P. & Troise, Giancarlo & Calise, Giuseppe & Bizzarrini, Nadia, 2016. "Wave energy conversion through a point pivoted absorber: Numerical and experimental tests on a scaled model," Renewable Energy, Elsevier, vol. 87(P1), pages 317-325.
    8. Elhanafi, Ahmed & Macfarlane, Gregor & Ning, Dezhi, 2018. "Hydrodynamic performance of single–chamber and dual–chamber offshore–stationary Oscillating Water Column devices using CFD," Applied Energy, Elsevier, vol. 228(C), pages 82-96.
    9. Windt, Christian & Davidson, Josh & Ransley, Edward J. & Greaves, Deborah & Jakobsen, Morten & Kramer, Morten & Ringwood, John V., 2020. "Validation of a CFD-based numerical wave tank model for the power production assessment of the wavestar ocean wave energy converter," Renewable Energy, Elsevier, vol. 146(C), pages 2499-2516.
    10. Francesco Ferri & Simon Ambühl & Boris Fischer & Jens Peter Kofoed, 2014. "Balancing Power Output and Structural Fatigue of Wave Energy Converters by Means of Control Strategies," Energies, MDPI, vol. 7(4), pages 1-28, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Hongjian & Qin, Hao & Su, Haowen & Wen, Zhixuan & Mu, Lin, 2024. "Environmental-Sensing and adaptive optimization of wave energy converter based on deep reinforcement learning and computational fluid dynamics," Energy, Elsevier, vol. 297(C).
    2. Zhao, Ming & Ning, Dezhi, 2024. "A review of numerical methods for studying hydrodynamic performance of oscillating water column (OWC) devices," Renewable Energy, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Peng & Zheng, Zhi & Zhou, Zhaomin & Zhou, Binzhen & Wang, Lei & Yang, Yang & Liu, Yingyi, 2023. "Optimization and evaluation of a semi-submersible wind turbine and oscillating body wave energy converters hybrid system," Energy, Elsevier, vol. 282(C).
    2. Tunde Aderinto & Hua Li, 2019. "Review on Power Performance and Efficiency of Wave Energy Converters," Energies, MDPI, vol. 12(22), pages 1-24, November.
    3. Giannini, Gianmaria & Rosa-Santos, Paulo & Ramos, Victor & Taveira-Pinto, Francisco, 2022. "Wave energy converters design combining hydrodynamic performance and structural assessment," Energy, Elsevier, vol. 249(C).
    4. Ruijia Jin & Jiawei Wang & Hanbao Chen & Baolei Geng & Zhen Liu, 2022. "Numerical Investigation of Multi-Floater Truss-Type Wave Energy Convertor Platform," Energies, MDPI, vol. 15(15), pages 1-17, August.
    5. Mobin Masoomi & Mahdi Yousefifard & Amir Mosavi, 2021. "Efficiency Assessment of an Amended Oscillating Water Column Using OpenFOAM," Sustainability, MDPI, vol. 13(10), pages 1-23, May.
    6. Taherian Haghighi, Ali & Nikseresht, Amir H. & Hayati, Mohammad, 2021. "Numerical analysis of hydrodynamic performance of a dual-chamber Oscillating Water Column," Energy, Elsevier, vol. 221(C).
    7. Mohd Afifi Jusoh & Mohd Zamri Ibrahim & Muhamad Zalani Daud & Zulkifli Mohd Yusop & Aliashim Albani, 2020. "An Estimation of Hydraulic Power Take-off Unit Parameters for Wave Energy Converter Device Using Non-Evolutionary NLPQL and Evolutionary GA Approaches," Energies, MDPI, vol. 14(1), pages 1-26, December.
    8. Wang, Chen & Zhang, Yongliang, 2021. "Numerical investigation on the wave power extraction for a 3D dual-chamber oscillating water column system composed of two closely connected circular sub-units," Applied Energy, Elsevier, vol. 295(C).
    9. Cheng, Yong & Du, Weiming & Dai, Saishuai & Ji, Chunyan & Collu, Maurizio & Cocard, Margot & Cui, Lin & Yuan, Zhiming & Incecik, Atilla, 2022. "Hydrodynamic characteristics of a hybrid oscillating water column-oscillating buoy wave energy converter integrated into a π-type floating breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    10. Luan, Zhengxiao & Chen, Bangqi & Jin, Ruijia & He, Guanghua & Ghassemi, Hassan & Jing, Penglin, 2024. "Validation of a numerical wave tank based on overset mesh for the wavestar-like wave energy converter in the South China Sea," Energy, Elsevier, vol. 290(C).
    11. Mayon, Robert & Ning, Dezhi & Zhang, Chongwei & Chen, Lifen & Wang, Rongquan, 2021. "Wave energy capture by an omnidirectional point sink oscillating water column system," Applied Energy, Elsevier, vol. 304(C).
    12. Yanna Zheng & Jiafan Li & Yingna Mu & Yu Zhang & Siyao Huang & Xiran Shao, 2023. "Numerical Study on Wave Dissipation Performance of OWC-Perforated Floating Breakwater under Irregular Waves," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    13. Zhao, Ming & Ning, Dezhi, 2024. "A review of numerical methods for studying hydrodynamic performance of oscillating water column (OWC) devices," Renewable Energy, Elsevier, vol. 233(C).
    14. Zhou, Binzhen & Zheng, Zhi & Jin, Peng & Wang, Lei & Zang, Jun, 2022. "Wave attenuation and focusing performance of parallel twin parabolic arc floating breakwaters," Energy, Elsevier, vol. 260(C).
    15. Hua Liu & Weijun Wang & Shuai Tang & Longbo Mao & Hongju Mi & Guoping Zhang & Jun Liu, 2019. "Reliability Assessment of Water Hydraulic-Drive Wave-Energy Converters," Energies, MDPI, vol. 12(21), pages 1-21, November.
    16. Windt, Christian & Davidson, Josh & Ringwood, John V., 2018. "High-fidelity numerical modelling of ocean wave energy systems: A review of computational fluid dynamics-based numerical wave tanks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 610-630.
    17. Wang, Yuhan & Dong, Sheng, 2022. "Array of concentric perforated cylindrical systems with torus oscillating bodies integrated on inner cylinders," Applied Energy, Elsevier, vol. 327(C).
    18. Li, Qiaofeng & Mi, Jia & Li, Xiaofan & Chen, Shuo & Jiang, Boxi & Zuo, Lei, 2021. "A self-floating oscillating surge wave energy converter," Energy, Elsevier, vol. 230(C).
    19. Dimitrios N. Konispoliatis, 2023. "The Effect of Hydrodynamics on the Power Efficiency of a Toroidal Oscillating Water Column Device," Sustainability, MDPI, vol. 15(16), pages 1-29, August.
    20. Kelly, Michael & Tom, Nathan & Yu, Yi-Hsiang & Wright, Alan & Lawson, Michael, 2021. "Annual performance of the second-generation variable-geometry oscillating surge wave energy converter," Renewable Energy, Elsevier, vol. 177(C), pages 242-258.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:269:y:2023:i:c:s0360544223002013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.