IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544224000185.html
   My bibliography  Save this article

Energy, exergy, sustainability, thermoeconomic, exergoeconomic, environmental and environmental-economic effects of novel boron-containing open cell geopolymer filter of a diesel engine on exhaust emissions

Author

Listed:
  • Karali, Halil Ibrahim
  • Caliskan, Hakan

Abstract

In this study, the energy, exergy, sustainability, thermoeconomic, exergoeconomic, environmental and environmental-economic based analyses are applied to the experimentally developed (3 % boric acid based) boron-doped geopolymer filter used for the diesel engine to assess it in a large engineering point of view. In this context, novel boron-doped filter exhaust after treatment system (BDF EAS) is compared with catalytic exhaust after treatment system (catalytic EAS) and unfiltered option (filterless) with engine loads of 50 Nm, 75 Nm and 100 Nm, while engine speeds are 1500 rpm, 1700 rpm, and 1900 rpm. The utilization of the newly developed BDF EAS has a significant effect on the exhaust emission particles. It effectively filters the particles compared to the original catalytic EAS of the engine. On the other hand, the developed BDF EAS has effective oxidation process for the emissions. So, the newly developed boron-doped filter can be used as a single device that has both of the Diesel Oxidation Catalyst (DOC) and Diesel Particulate Filter (DPF) specifications together. Hence, the new product of BDF EAS is environmentally benign system for the diesel engines and boron-doped geopolymer material can be used as an innovative material in the automotive industry's exhaust emission control system.

Suggested Citation

  • Karali, Halil Ibrahim & Caliskan, Hakan, 2024. "Energy, exergy, sustainability, thermoeconomic, exergoeconomic, environmental and environmental-economic effects of novel boron-containing open cell geopolymer filter of a diesel engine on exhaust emi," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544224000185
    DOI: 10.1016/j.energy.2024.130247
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224000185
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130247?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Caliskan, Hakan & Mori, Kazutoshi, 2017. "Environmental, enviroeconomic and enhanced thermodynamic analyses of a diesel engine with diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) after treatment systems," Energy, Elsevier, vol. 128(C), pages 128-144.
    2. Balli, Ozgur & Hepbasli, Arif, 2014. "Exergoeconomic, sustainability and environmental damage cost analyses of T56 turboprop engine," Energy, Elsevier, vol. 64(C), pages 582-600.
    3. Korba, Peter & Balli, Ozgur & Caliskan, Hakan & Al-Rabeei, Samer & Kale, Utku, 2023. "Energy, exergy, economic, environmental, and sustainability assessments of the CFM56-3 series turbofan engine used in the aviation sector," Energy, Elsevier, vol. 269(C).
    4. Toffolo, A. & Lazzaretto, A., 2002. "Evolutionary algorithms for multi-objective energetic and economic optimization in thermal system design," Energy, Elsevier, vol. 27(6), pages 549-567.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balli, Ozgur & Kale, Utku & Rohács, Dániel & Hikmet Karakoc, T., 2022. "Environmental damage cost and exergoenvironmental evaluations of piston prop aviation engines for the landing and take-off flight phases," Energy, Elsevier, vol. 261(PB).
    2. Balli, Ozgur & Caliskan, Hakan, 2024. "Investigating renewable and sustainable biofuel and biofuel/diesel blends utilizations in a turboshaft engine used on helicopters," Energy, Elsevier, vol. 306(C).
    3. Balli, Ozgur, 2023. "Exergetic, sustainability and environmental assessments of a turboshaft engine used on helicopter," Energy, Elsevier, vol. 276(C).
    4. Baklacioglu, Tolga & Turan, Onder & Aydin, Hakan, 2015. "Dynamic modeling of exergy efficiency of turboprop engine components using hybrid genetic algorithm-artificial neural networks," Energy, Elsevier, vol. 86(C), pages 709-721.
    5. Balli, Ozgur & Karakoc, T. Hikmet, 2022. "Exergetic, exergoeconomic, exergoenvironmental damage cost and impact analyses of an aircraft turbofan engine(ATFE)," Energy, Elsevier, vol. 256(C).
    6. Balli, Ozgur, 2017. "Advanced exergy analyses of an aircraft turboprop engine (TPE)," Energy, Elsevier, vol. 124(C), pages 599-612.
    7. Abdalla, Muftah S.M. & Balli, Ozgur & Adali, Osama H. & Korba, Peter & Kale, Utku, 2023. "Thermodynamic, sustainability, environmental and damage cost analyses of jet fuel starter gas turbine engine," Energy, Elsevier, vol. 267(C).
    8. Ahmadi, Pouria & Dincer, Ibrahim, 2010. "Exergoenvironmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA)," Energy, Elsevier, vol. 35(12), pages 5161-5172.
    9. Wang, Zhen & Duan, Liqiang & Zhang, Zuxian, 2022. "Multi-objective optimization of gas turbine combined cycle system considering environmental damage cost of pollution emissions," Energy, Elsevier, vol. 261(PA).
    10. Balli, Ozgur, 2022. "Thermodynamic, thermoenvironmental and thermoeconomic analyses of piston-prop engines (PPEs) for landing and take-off (LTO) flight phases," Energy, Elsevier, vol. 250(C).
    11. Ahmadi, Mohammad H. & Amin Nabakhteh, Mohammad & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah & Bidi, Mokhtar, 2017. "Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell–Boltzmann gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 337-350.
    12. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2011. "Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants," Energy, Elsevier, vol. 36(10), pages 5886-5898.
    13. Kwonwoo Jang & Jeonghyeon Yang & Beomsoo Kim & Jaesung Kwon, 2024. "Effects of Decanol Blended Diesel Fuel on Engine Efficiency and Pollutant Emissions," Energies, MDPI, vol. 17(24), pages 1-17, December.
    14. Coban, Kahraman & Şöhret, Yasin & Colpan, C. Ozgur & Karakoç, T. Hikmet, 2017. "Exergetic and exergoeconomic assessment of a small-scale turbojet fuelled with biodiesel," Energy, Elsevier, vol. 140(P2), pages 1358-1367.
    15. Aygun, Hakan & Turan, Onder, 2021. "Exergo-economic analysis of off-design a target drone engine for reconnaissance mission flight," Energy, Elsevier, vol. 224(C).
    16. Atilgan, Ramazan & Onder Turan,, 2020. "Economy and exergy of aircraft turboprop engine at dynamic loads," Energy, Elsevier, vol. 213(C).
    17. Nondy, J. & Gogoi, T.K., 2021. "Performance comparison of multi-objective evolutionary algorithms for exergetic and exergoenvironomic optimization of a benchmark combined heat and power system," Energy, Elsevier, vol. 233(C).
    18. Naserabad, S. Nikbakht & Mehrpanahi, A. & Ahmadi, G., 2018. "Multi-objective optimization of HRSG configurations on the steam power plant repowering specifications," Energy, Elsevier, vol. 159(C), pages 277-293.
    19. Hamedi, Mohammad Reza & Doustdar, Omid & Tsolakis, Athanasios & Hartland, Jonathan, 2021. "Energy-efficient heating strategies of diesel oxidation catalyst for low emissions vehicles," Energy, Elsevier, vol. 230(C).
    20. Niknam, Taher & Narimani, Mohammad rasoul & Jabbari, Masoud & Malekpour, Ahmad Reza, 2011. "A modified shuffle frog leaping algorithm for multi-objective optimal power flow," Energy, Elsevier, vol. 36(11), pages 6420-6432.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544224000185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.