IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v311y2024ics0360544224031347.html
   My bibliography  Save this article

Exergy and energy analysis on the performance of high thermal conductivity material in PV/T system: An experimental approach

Author

Listed:
  • Balachandran, Gurukarthik Babu
  • Baskaran, Vishnu Karan
  • Chidambaram, Abirami
  • David, Prince Winston

Abstract

The energy loss of any system might be affects the performance. This paper focuses on the investigation of 10E: Exergy, Energy, Environmental, Economic, Exergo-Enviro-Economic, Energo-Economic, Energo-Enviro, Exergo Economic, Enviro-Economic and Exergo-Environmental analysis. The energy loss of PV/T can be mitigated by incorporating with the mixture of Aluminium, Copper and Iron as high thermal conductivity material. Energy output per-year for the developed PV is 0.9960 kW-hour. The energy output per-year for the developed solar still is 117.913 kW-hour. The Capacity Utilisation Factor for the developed system increased from 2.77 percent to 2.91 percent compared to the conventional. The Levelized Cost of Electricity for the Conventional-Solar-Still is deemed to be 3.39 $ whereas for the developed work it is 3.46 $. The output exergy per-year for the developed PV system is 140.08 kW-hour and in developed solar-still, it is 12.798 kW-hour. Gross Carbon Reduction is observed as 94 tCO2. The Carbon-Payback-Period for the developed system is 34.72 years. The estimated cost per litre of the developed work is 0.018$, 0.016$ and 0.015$ for considering the period of 15 years, 20 years and 30 years. Overall, the 10E framework of developed PV/T system provides the significant performance.

Suggested Citation

  • Balachandran, Gurukarthik Babu & Baskaran, Vishnu Karan & Chidambaram, Abirami & David, Prince Winston, 2024. "Exergy and energy analysis on the performance of high thermal conductivity material in PV/T system: An experimental approach," Energy, Elsevier, vol. 311(C).
  • Handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224031347
    DOI: 10.1016/j.energy.2024.133358
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224031347
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133358?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akyuz, E. & Coskun, C. & Oktay, Z. & Dincer, I., 2012. "A novel approach for estimation of photovoltaic exergy efficiency," Energy, Elsevier, vol. 44(1), pages 1059-1066.
    2. Hassan, Hamdy, 2020. "Comparing the performance of passive and active double and single slope solar stills incorporated with parabolic trough collector via energy, exergy and productivity," Renewable Energy, Elsevier, vol. 148(C), pages 437-450.
    3. Chow, T.T. & Pei, G. & Fong, K.F. & Lin, Z. & Chan, A.L.S. & Ji, J., 2009. "Energy and exergy analysis of photovoltaic-thermal collector with and without glass cover," Applied Energy, Elsevier, vol. 86(3), pages 310-316, March.
    4. Sreenath, S. & Sudhakar, K. & AF, Yusop, 2021. "7E analysis of a conceptual utility-scale land-based solar photovoltaic power plant," Energy, Elsevier, vol. 219(C).
    5. Kianifar, Ali & Zeinali Heris, Saeed & Mahian, Omid, 2012. "Exergy and economic analysis of a pyramid-shaped solar water purification system: Active and passive cases," Energy, Elsevier, vol. 38(1), pages 31-36.
    6. Sobhnamayan, F. & Sarhaddi, F. & Alavi, M.A. & Farahat, S. & Yazdanpanahi, J., 2014. "Optimization of a solar photovoltaic thermal (PV/T) water collector based on exergy concept," Renewable Energy, Elsevier, vol. 68(C), pages 356-365.
    7. Korba, Peter & Balli, Ozgur & Caliskan, Hakan & Al-Rabeei, Samer & Kale, Utku, 2023. "Energy, exergy, economic, environmental, and sustainability assessments of the CFM56-3 series turbofan engine used in the aviation sector," Energy, Elsevier, vol. 269(C).
    8. Shoeibi, Shahin & Rahbar, Nader & Abedini Esfahlani, Ahad & Kargarsharifabad, Hadi, 2021. "A comprehensive review of Enviro-Exergo-economic analysis of solar stills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    9. Zhang, Shuai & Li, Ying & Yan, Yuying, 2024. "Hybrid sensible-latent heat thermal energy storage using natural stones to enhance heat transfer: Energy, exergy, and economic analysis," Energy, Elsevier, vol. 286(C).
    10. Zhang, Shuai & Yan, Yuying, 2023. "Energy, exergy and economic analysis of ceramic foam-enhanced molten salt as phase change material for medium- and high-temperature thermal energy storage," Energy, Elsevier, vol. 262(PA).
    11. Eisapour, M. & Eisapour, Amir Hossein & Hosseini, M.J. & Talebizadehsardari, P., 2020. "Exergy and energy analysis of wavy tubes photovoltaic-thermal systems using microencapsulated PCM nano-slurry coolant fluid," Applied Energy, Elsevier, vol. 266(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Firoozzadeh & Marzieh Lotfi & Amir Hossein Shiravi, 2022. "An Experimental Study on Simultaneous Use of Metal Fins and Mirror to Improve the Performance of Photovoltaic Panels," Sustainability, MDPI, vol. 14(24), pages 1-14, December.
    2. Bayrak, Fatih & Abu-Hamdeh, Nidal & Alnefaie, Khaled A. & Öztop, Hakan F., 2017. "A review on exergy analysis of solar electricity production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 755-770.
    3. Sardarabadi, Mohammad & Hosseinzadeh, Mohammad & Kazemian, Arash & Passandideh-Fard, Mohammad, 2017. "Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints," Energy, Elsevier, vol. 138(C), pages 682-695.
    4. Firoozzadeh, Mohammad & Shiravi, Amir Hossein & Lotfi, Marzieh & Aidarova, Saule & Sharipova, Altynay, 2021. "Optimum concentration of carbon black aqueous nanofluid as coolant of photovoltaic modules: A case study," Energy, Elsevier, vol. 225(C).
    5. Yazdanifard, Farideh & Ebrahimnia-Bajestan, Ehsan & Ameri, Mehran, 2016. "Investigating the performance of a water-based photovoltaic/thermal (PV/T) collector in laminar and turbulent flow regime," Renewable Energy, Elsevier, vol. 99(C), pages 295-306.
    6. Chen, J.F. & Zhang, L. & Dai, Y.J., 2018. "Performance analysis and multi-objective optimization of a hybrid photovoltaic/thermal collector for domestic hot water application," Energy, Elsevier, vol. 143(C), pages 500-516.
    7. Fatih Selimefendigil & Ceylin Şirin & Hakan F. Öztop, 2022. "Experimental Performance Analysis of a Solar Desalination System Modified with Natural Dolomite Powder Integrated Latent Heat Thermal Storage Unit," Sustainability, MDPI, vol. 14(5), pages 1-15, February.
    8. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo & Vicidomini, Maria, 2019. "Transient analysis, exergy and thermo-economic modelling of façade integrated photovoltaic/thermal solar collectors," Renewable Energy, Elsevier, vol. 137(C), pages 109-126.
    9. Das, Dudul & Kalita, Pankaj & Roy, Omkar, 2018. "Flat plate hybrid photovoltaic- thermal (PV/T) system: A review on design and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 111-130.
    10. Hussain, F. & Othman, M.Y.H & Sopian, K. & Yatim, B. & Ruslan, H. & Othman, H., 2013. "Design development and performance evaluation of photovoltaic/thermal (PV/T) air base solar collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 431-441.
    11. Sathe, Tushar M. & Dhoble, A.S., 2017. "A review on recent advancements in photovoltaic thermal techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 645-672.
    12. Shoeibi, Shahin & Kargarsharifabad, Hadi & Mirjalily, Seyed Ali Agha & Zargarazad, Mojtaba, 2021. "Performance analysis of finned photovoltaic/thermal solar air dryer with using a compound parabolic concentrator," Applied Energy, Elsevier, vol. 304(C).
    13. Shahsavar, Amin & Alwaeli, Ali H.A. & Azimi, Neda & Rostami, Shirin & Sopian, Kamaruzzaman & Arıcı, Müslüm & Estellé, Patrice & Nižetić, Sandro & Kasaeian, Alibakhsh & Ali, Hafiz Muhammad & Ma, Zhenju, 2022. "Exergy studies in water-based and nanofluid-based photovoltaic/thermal collectors: Status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Viet Van Hoang & Hiep Chi Le & Bao The Nguyen, 2022. "Energy, Exergy Efficiency and Thermal-Electrical Production Assessment for an Active Water Heating System Using Four PV/T Module Models," Energies, MDPI, vol. 15(24), pages 1-27, December.
    15. Rejeb, Oussama & Dhaou, Houcine & Jemni, Abdelmajid, 2015. "A numerical investigation of a photovoltaic thermal (PV/T) collector," Renewable Energy, Elsevier, vol. 77(C), pages 43-50.
    16. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    17. Maadi, Seyed Reza & Sabzali, Hossein & Arabkoohsar, Ahmad, 2024. "Performance characterization of nano-enhanced PV/T systems in various cross-sections, extended flow turbulators, fins, and corrugated patterns," Renewable Energy, Elsevier, vol. 229(C).
    18. Islam, M.M. & Hasanuzzaman, M. & Rahim, N.A. & Pandey, A.K. & Rawa, M. & Kumar, L., 2021. "Real time experimental performance investigation of a NePCM based photovoltaic thermal system: An energetic and exergetic approach," Renewable Energy, Elsevier, vol. 172(C), pages 71-87.
    19. Kamel Guedri & Mohamed Salem & Mamdouh El Haj Assad & Jaroon Rungamornrat & Fatimah Malek Mohsen & Yonis M. Buswig, 2022. "PV/Thermal as Promising Technologies in Buildings: A Comprehensive Review on Exergy Analysis," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    20. Yazdanifard, Farideh & Ameri, Mehran & Ebrahimnia-Bajestan, Ehsan, 2017. "Performance of nanofluid-based photovoltaic/thermal systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 323-352.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224031347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.