IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v268y2023ics0360544223000968.html
   My bibliography  Save this article

Two-stage real-time optimal electricity dispatch strategy for urban residential quarter with electric vehicles’ charging load

Author

Listed:
  • Li, Yipu
  • Su, Hao
  • Zhou, Yun
  • Chen, Lixia
  • Shi, Yiwei
  • Li, Hengjie
  • Feng, Donghan

Abstract

The potential of demand-side management and the schedulable ability of electric vehicles (EVs) encourage demand-side management operators such as residential load aggregators to dispatch the electricity demand and supply of the residential quarter and enhance the economics and security of energy use. Considering the uncertainties in the arrival time, departure time, and charging amount of EVs, a two-stage real-time optimal electricity dispatch strategy for residential quarters with EVs' charging load is proposed here. First, a real-time optimal approach is proposed based on the receding horizon optimization process to decompose the day-ahead optimal period into sequential advanced optimization horizons. Second, considering the dual optimization goals of economics and security, a two-stage optimization procedure is proposed for the residential quarter's electricity dispatch in the advanced optimization horizon. Specifically, the first-stage optimization model aims to minimize the total cost of electricity of the residential quarter. And the second-stage optimization model is to minimize the peak-valley load difference of the residential quarter. Based on these models, a solving timeline with detailed steps for the proposed two-stage real-time optimal electricity dispatch strategy is presented. Finally, case studies on the data of a real residential quarter located in Shanghai demonstrate the effectiveness of the proposed methodology.

Suggested Citation

  • Li, Yipu & Su, Hao & Zhou, Yun & Chen, Lixia & Shi, Yiwei & Li, Hengjie & Feng, Donghan, 2023. "Two-stage real-time optimal electricity dispatch strategy for urban residential quarter with electric vehicles’ charging load," Energy, Elsevier, vol. 268(C).
  • Handle: RePEc:eee:energy:v:268:y:2023:i:c:s0360544223000968
    DOI: 10.1016/j.energy.2023.126702
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223000968
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126702?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Jianhong & Zhang, Youlang & Li, Xinzhou & Sun, Bo & Liao, Qiangqiang & Tao, Yibin & Wang, Zhiqin, 2020. "Strategic integration of vehicle-to-home system with home distributed photovoltaic power generation in Shanghai," Applied Energy, Elsevier, vol. 263(C).
    2. Shokrzadeh, Shahab & Ribberink, Hajo & Rishmawi, Issa & Entchev, Evgueniy, 2017. "A simplified control algorithm for utilities to utilize plug-in electric vehicles to reduce distribution transformer overloading," Energy, Elsevier, vol. 133(C), pages 1121-1131.
    3. Lotfi, Mohamed & Almeida, Tiago & Javadi, Mohammad S. & Osório, Gerardo J. & Monteiro, Cláudio & Catalão, João P.S., 2022. "Coordinating energy management systems in smart cities with electric vehicles," Applied Energy, Elsevier, vol. 307(C).
    4. Hou, Qingchun & Zhang, Ning & Du, Ershun & Miao, Miao & Peng, Fei & Kang, Chongqing, 2019. "Probabilistic duck curve in high PV penetration power system: Concept, modeling, and empirical analysis in China," Applied Energy, Elsevier, vol. 242(C), pages 205-215.
    5. Fang, Xin & Hodge, Bri-Mathias & Du, Ershun & Zhang, Ning & Li, Fangxing, 2018. "Modelling wind power spatial-temporal correlation in multi-interval optimal power flow: A sparse correlation matrix approach," Applied Energy, Elsevier, vol. 230(C), pages 531-539.
    6. Tepe, Benedikt & Figgener, Jan & Englberger, Stefan & Sauer, Dirk Uwe & Jossen, Andreas & Hesse, Holger, 2022. "Optimal pool composition of commercial electric vehicles in V2G fleet operation of various electricity markets," Applied Energy, Elsevier, vol. 308(C).
    7. Kamankesh, Hamidreza & Agelidis, Vassilios G. & Kavousi-Fard, Abdollah, 2016. "Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand," Energy, Elsevier, vol. 100(C), pages 285-297.
    8. Jian, Linni & Zheng, Yanchong & Shao, Ziyun, 2017. "High efficient valley-filling strategy for centralized coordinated charging of large-scale electric vehicles," Applied Energy, Elsevier, vol. 186(P1), pages 46-55.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Auza & Ehsan Asadi & Behrang Chenari & Manuel Gameiro da Silva, 2023. "A Systematic Review of Uncertainty Handling Approaches for Electric Grids Considering Electrical Vehicles," Energies, MDPI, vol. 16(13), pages 1-25, June.
    2. Jiang, Hou & Yao, Ling & Lu, Ning & Qin, Jun & Zhang, Xiaotong & Liu, Tang & Zhang, Xingxing & Zhou, Chenghu, 2024. "Exploring the optimization of rooftop photovoltaic scale and spatial layout under curtailment constraints," Energy, Elsevier, vol. 293(C).
    3. Heping Jia & Qianxin Ma & Yun Li & Mingguang Liu & Dunnan Liu, 2023. "Integrating Electric Vehicles to Power Grids: A Review on Modeling, Regulation, and Market Operation," Energies, MDPI, vol. 16(17), pages 1-18, August.
    4. Zhang, Rui & Yu, Jilai, 2024. "Evaluating multi-dimensional response capability of electric bus considering carbon emissions and traffic index," Energy, Elsevier, vol. 286(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muchun Wan & Heyang Yu & Yingning Huo & Kan Yu & Quanyuan Jiang & Guangchao Geng, 2024. "Feasibility and Challenges for Vehicle-to-Grid in Electricity Market: A Review," Energies, MDPI, vol. 17(3), pages 1-23, January.
    2. Junchao Cheng & Yongyi Huang & Hongjing He & Abdul Matin Ibrahimi & Tomonobu Senjyu, 2023. "Optimal Operation of CCHP System Combined Electric Vehicles Considering Seasons," Energies, MDPI, vol. 16(10), pages 1-21, May.
    3. Guo, Shiliang & Li, Pengpeng & Ma, Kai & Yang, Bo & Yang, Jie, 2022. "Robust energy management for industrial microgrid considering charging and discharging pressure of electric vehicles," Applied Energy, Elsevier, vol. 325(C).
    4. Li, Shuangqi & Zhao, Pengfei & Gu, Chenghong & Huo, Da & Zeng, Xianwu & Pei, Xiaoze & Cheng, Shuang & Li, Jianwei, 2022. "Online battery-protective vehicle to grid behavior management," Energy, Elsevier, vol. 243(C).
    5. Lingling Hu & Junming Zhou & Feng Jiang & Guangming Xie & Jie Hu & Qinglie Mo, 2023. "Research on Optimization of Valley-Filling Charging for Vehicle Network System Based on Multi-Objective Optimization," Sustainability, MDPI, vol. 16(1), pages 1-25, December.
    6. Dingyi Lu & Yunqian Lu & Kexin Zhang & Chuyuan Zhang & Shao-Chao Ma, 2023. "An Application Designed for Guiding the Coordinated Charging of Electric Vehicles," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    7. Lu, Xinhui & Liu, Zhaoxi & Ma, Li & Wang, Lingfeng & Zhou, Kaile & Yang, Shanlin, 2020. "A robust optimization approach for coordinated operation of multiple energy hubs," Energy, Elsevier, vol. 197(C).
    8. Niu, Jide & Li, Xiaoyuan & Tian, Zhe & Yang, Hongxing, 2024. "Uncertainty analysis of the electric vehicle potential for a household to enhance robustness in decision on the EV/V2H technologies," Applied Energy, Elsevier, vol. 365(C).
    9. Luo, Qingsong & Zhou, Yimin & Hou, Weicheng & Peng, Lei, 2022. "A hierarchical blockchain architecture based V2G market trading system," Applied Energy, Elsevier, vol. 307(C).
    10. Golpîra, Hêriş & Khan, Syed Abdul Rehman, 2019. "A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty," Energy, Elsevier, vol. 170(C), pages 1113-1129.
    11. Elkholy, M.H. & Metwally, Hamid & Farahat, M.A. & Senjyu, Tomonobu & Elsayed Lotfy, Mohammed, 2022. "Smart centralized energy management system for autonomous microgrid using FPGA," Applied Energy, Elsevier, vol. 317(C).
    12. Homeyra Akter & Harun Or Rashid Howlader & Ahmed Y. Saber & Paras Mandal & Hiroshi Takahashi & Tomonobu Senjyu, 2021. "Optimal Sizing of Hybrid Microgrid in a Remote Island Considering Advanced Direct Load Control for Demand Response and Low Carbon Emission," Energies, MDPI, vol. 14(22), pages 1-19, November.
    13. Li, Pengfei & Hu, Weihao & Xu, Xiao & Huang, Qi & Liu, Zhou & Chen, Zhe, 2019. "A frequency control strategy of electric vehicles in microgrid using virtual synchronous generator control," Energy, Elsevier, vol. 189(C).
    14. Haoxiang Yang & David P. Morton & Chaithanya Bandi & Krishnamurthy Dvijotham, 2021. "Robust Optimization for Electricity Generation," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 336-351, January.
    15. Liu, Diyi & Zou, Hongyang & Qiu, Yueming & Du, Huibin, 2024. "Consumer reaction to green subsidy phase-out in China: Evidence from the household photovoltaic industry," Energy Economics, Elsevier, vol. 129(C).
    16. Zhang, Yusheng & Ma, Chao & Yang, Yang & Pang, Xiulan & Liu, Lu & Lian, Jijian, 2021. "Study on short-term optimal operation of cascade hydro-photovoltaic hybrid systems," Applied Energy, Elsevier, vol. 291(C).
    17. Armin Razmjoo & Meysam Majidi Nezhad & Lisa Gakenia Kaigutha & Mousa Marzband & Seyedali Mirjalili & Mehdi Pazhoohesh & Saim Memon & Mehdi A. Ehyaei & Giuseppe Piras, 2021. "Investigating Smart City Development Based on Green Buildings, Electrical Vehicles and Feasible Indicators," Sustainability, MDPI, vol. 13(14), pages 1-14, July.
    18. Tatiana Tucunduva Philippi Cortese & Jairo Filho Sousa de Almeida & Giseli Quirino Batista & José Eduardo Storopoli & Aaron Liu & Tan Yigitcanlar, 2022. "Understanding Sustainable Energy in the Context of Smart Cities: A PRISMA Review," Energies, MDPI, vol. 15(7), pages 1-38, March.
    19. Pierre Cayet & Arash Farnoosh, 2022. "A robust structural electric system model with significant share of intermittent renewables under auto-correlated residual demand," EconomiX Working Papers 2022-6, University of Paris Nanterre, EconomiX.
    20. Sepúlveda-Mora, Sergio B. & Hegedus, Steven, 2021. "Making the case for time-of-use electric rates to boost the value of battery storage in commercial buildings with grid connected PV systems," Energy, Elsevier, vol. 218(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:268:y:2023:i:c:s0360544223000968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.