IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v268y2023ics0360544223000671.html
   My bibliography  Save this article

Electrified calciner concept for CO2 capture in pyro-processing of a dry process cement plant

Author

Listed:
  • Jacob, Ron M.
  • Tokheim, Lars-André

Abstract

Around two-thirds of the CO2 emission from the cement industry comes from calcite decomposition (CaCO3 → CaO + CO2), and most of this reaction happens in the calciner. So, it is possible to reduce the CO2 emission significantly by electrifying the calciner. This possibility is studied in this work through a process simulation model using Aspen Plus. The model is first calibrated with experimental results for a cement calciner heated by coal firing. The validated model is then electrified with three scenarios of gas recycling. Electrifying an existing calciner will require high gas recycling, while some alternative designs require no gas recycling. The results indicate that this method could reduce the CO2 emissions by as much as 78%. The total energy (including fans, calciner and kiln) required in the coal-fired calciner system is around 138 MW. The energy in the electrified system may vary between 154 MW for high gas recycling and 137 MW for no gas recycling. The net excess energy in the electrified calciner per captured CO2 unit varies between 0.6 MJ/kgCO2 for high gas recycling and −0.04 MJ/kgCO2 for no gas recycling.

Suggested Citation

  • Jacob, Ron M. & Tokheim, Lars-André, 2023. "Electrified calciner concept for CO2 capture in pyro-processing of a dry process cement plant," Energy, Elsevier, vol. 268(C).
  • Handle: RePEc:eee:energy:v:268:y:2023:i:c:s0360544223000671
    DOI: 10.1016/j.energy.2023.126673
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223000671
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126673?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lechtenböhmer, Stefan & Nilsson, Lars J. & Åhman, Max & Schneider, Clemens, 2016. "Decarbonising the energy intensive basic materials industry through electrification – Implications for future EU electricity demand," Energy, Elsevier, vol. 115(P3), pages 1623-1631.
    2. Marta G. Plaza & Sergio Martínez & Fernando Rubiera, 2020. "CO 2 Capture, Use, and Storage in the Cement Industry: State of the Art and Expectations," Energies, MDPI, vol. 13(21), pages 1-28, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charalampos Michalakakis & Jeremy Fouillou & Richard C. Lupton & Ana Gonzalez Hernandez & Jonathan M. Cullen, 2021. "Calculating the chemical exergy of materials," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 274-287, April.
    2. Fortes, Patrícia & Simoes, Sofia G. & Gouveia, João Pedro & Seixas, Júlia, 2019. "Electricity, the silver bullet for the deep decarbonisation of the energy system? Cost-effectiveness analysis for Portugal," Applied Energy, Elsevier, vol. 237(C), pages 292-303.
    3. Shen, Peiliang & Jiang, Yi & Zhang, Yangyang & Liu, Songhui & Xuan, Dongxing & Lu, Jianxin & Zhang, Shipeng & Poon, Chi Sun, 2023. "Production of aragonite whiskers by carbonation of fine recycled concrete wastes: An alternative pathway for efficient CO2 sequestration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    4. Taran Faehn & Gabriel Bachner & Robert Beach & Jean Chateau & Shinichiro Fujimori & Madanmohan Ghosh & Meriem Hamdi-Cherif & Elisa Lanzi & Sergey Paltsev & Toon Vandyck & Bruno Cunha & Rafael Garaffa , 2020. "Capturing Key Energy and Emission Trends in CGE models: Assessment of Status and Remaining Challenges," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 196-272, June.
    5. Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).
    6. Santillán Vera, Mónica & García Manrique, Lilia & Rodríguez Peña, Isabel & De La Vega Navarro, Angel, 2023. "Drivers of electricity GHG emissions and the role of natural gas in mexican energy transition," Energy Policy, Elsevier, vol. 173(C).
    7. van Zuijlen, Bas & Zappa, William & Turkenburg, Wim & van der Schrier, Gerard & van den Broek, Machteld, 2019. "Cost-optimal reliable power generation in a deep decarbonisation future," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Karlsson, Ida & Rootzén, Johan & Johnsson, Filip, 2020. "Reaching net-zero carbon emissions in construction supply chains – Analysis of a Swedish road construction project," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    9. Layritz, Lucia S. & Dolganova, Iulia & Finkbeiner, Matthias & Luderer, Gunnar & Penteado, Alberto T. & Ueckerdt, Falko & Repke, Jens-Uwe, 2021. "The potential of direct steam cracker electrification and carbon capture & utilization via oxidative coupling of methane as decarbonization strategies for ethylene production," Applied Energy, Elsevier, vol. 296(C).
    10. Hana Nielsen & Astrid Kander, 2020. "Trade in the Carbon-Constrained Future: Exploiting the Comparative Carbon Advantage of Swedish Trade," Energies, MDPI, vol. 13(14), pages 1-25, July.
    11. Fernando Martins & Pedro Moura & Aníbal T. de Almeida, 2022. "The Role of Electrification in the Decarbonization of the Energy Sector in Portugal," Energies, MDPI, vol. 15(5), pages 1-35, February.
    12. Mathilde Fajardy & David Reiner, 2020. "An overview of the electrification of residential and commercial heating and cooling and prospects for decarbonisation," Working Papers EPGR2037, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    13. Pedro Mora & Arturo Alarcón & Laura Sánchez-Martín & Bernardo Llamas, 2021. "Biomass Content in Scrap Tires and Its Use as Sustainable Energy Resource: A CO 2 Mitigation Assessment," Sustainability, MDPI, vol. 13(6), pages 1-12, March.
    14. Martin Greco-Coppi & Carina Hofmann & Diethelm Walter & Jochen Ströhle & Bernd Epple, 2023. "Negative CO2 emissions in the lime production using an indirectly heated carbonate looping process," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(6), pages 1-32, August.
    15. Alla Toktarova & Ida Karlsson & Johan Rootzén & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2020. "Pathways for Low-Carbon Transition of the Steel Industry—A Swedish Case Study," Energies, MDPI, vol. 13(15), pages 1-18, July.
    16. Johannsen, Rasmus Magni & Mathiesen, Brian Vad & Kermeli, Katerina & Crijns-Graus, Wina & Østergaard, Poul Alberg, 2023. "Exploring pathways to 100% renewable energy in European industry," Energy, Elsevier, vol. 268(C).
    17. Wahiba Yaïci & Evgueniy Entchev & Michela Longo, 2022. "Recent Advances in Small-Scale Carbon Capture Systems for Micro-Combined Heat and Power Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
    18. Morgenthaler, Simon & Kuckshinrichs, Wilhelm & Witthaut, Dirk, 2020. "Optimal system layout and locations for fully renewable high temperature co-electrolysis," Applied Energy, Elsevier, vol. 260(C).
    19. Guzović, Zvonimir & Duic, Neven & Piacentino, Antonio & Markovska, Natasa & Mathiesen, Brian Vad & Lund, Henrik, 2022. "Recent advances in methods, policies and technologies at sustainable energy systems development," Energy, Elsevier, vol. 245(C).
    20. Philipp, Matthias & Schumm, Gregor & Peesel, Ron-Hendrik & Walmsley, Timothy G. & Atkins, Martin J. & Schlosser, Florian & Hesselbach, Jens, 2018. "Optimal energy supply structures for industrial food processing sites in different countries considering energy transitions," Energy, Elsevier, vol. 146(C), pages 112-123.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:268:y:2023:i:c:s0360544223000671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.