IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2938-d795582.html
   My bibliography  Save this article

Recent Advances in Small-Scale Carbon Capture Systems for Micro-Combined Heat and Power Applications

Author

Listed:
  • Wahiba Yaïci

    (CanmetENERGY Research Centre, Natural Resources Canada, 1 Haanel Drive, Ottawa, ON K1A 1M1, Canada)

  • Evgueniy Entchev

    (CanmetENERGY Research Centre, Natural Resources Canada, 1 Haanel Drive, Ottawa, ON K1A 1M1, Canada)

  • Michela Longo

    (Department of Energy, Politecnico di Milano, Via La Masa, 34-20156 Milan, Italy)

Abstract

To restrict global warming and relieve climate change, the world economy requires to decarbonize and reduce carbon dioxide (CO 2 ) emissions to net-zero by mid-century. Carbon capture and storage (CCS), and carbon capture and utilization (CCU), by which CO 2 emissions are captured from sources such as fossil power generation and combustion processes, and further either reused or stored, are recognized worldwide as key technologies for global warming mitigation. This paper provides a review of the latest published literature on small-scale carbon capture (CC) systems as applied in micro combined heat and power cogeneration systems for use in buildings. Previous studies have investigated a variety of small- or micro-scale combined heat and power configurations defined by their prime mover for CC integration. These include the micro gas turbine, the hybrid micro gas turbine and solid-state fuel cell system, and the biomass-fired organic Rankine cycle, all of which have been coupled with a post-combustion, amine-based absorption plant. After these configurations are defined, their performance is discussed. Considerations for optimizing the overall system parameters are identified using the same sources. The paper considers optimization of modifications to the micro gas turbine cycles with exhaust gas recirculation, humidification, and more advanced energy integration for optimal use of waste heat. Related investigations are based largely on numerical studies, with some preliminary experimental work undertaken on the Turbec T100 micro gas turbine. A brief survey is presented of some additional topics, including storage and utilization options, commercially available CC technologies, and direct atmospheric capture. Based on the available literature, it was found that carbon capture for small-scale systems introduces a large energy penalty due to the low concentration of CO 2 in exhaust gases. Further development is required to decrease the energy loss from CC for economic feasibility on a small scale. For the micro gas turbine, exhaust gas recirculation, selective gas recirculation, and humidification were shown to improve overall system economic performance and efficiency. However, the highest global efficiencies were achieved by leveraging turbine exhaust waste heat to reduce the thermal energy requirement for solvent regeneration in the CC plant during low- or zero-heating loads. It was shown that although humidification cycles improved micro gas turbine cycle efficiencies, this may not be the best option to improve global efficiency if turbine waste heat is properly leveraged based on heating demands. The biomass-organic Rankine cycle and hybrid micro gas turbine, and solid-state fuel cell systems with CC, are in early developmental stages and require more research to assess their feasibility. However, the hybrid micro gas turbine and solid-state fuel cell energy system with CC was shown numerically to reach high global efficiency (51.4% LHV). It was also shown that the biomass-fired organic Rankine cycle system could result in negative emissions when coupled with a CC plant. In terms of costs, it was found that utilization through enhanced oil recovery was a promising strategy to offset the cost of carbon capture. Direct atmospheric capture was determined to be less economically feasible than capture from concentrated point sources; however, it has the benefit of negative carbon emissions.

Suggested Citation

  • Wahiba Yaïci & Evgueniy Entchev & Michela Longo, 2022. "Recent Advances in Small-Scale Carbon Capture Systems for Micro-Combined Heat and Power Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2938-:d:795582
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2938/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2938/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stathopoulos, P. & Paschereit, C.O., 2015. "Retrofitting micro gas turbines for wet operation. A way to increase operational flexibility in distributed CHP plants," Applied Energy, Elsevier, vol. 154(C), pages 438-446.
    2. Kuramochi, Takeshi & Ramírez, Andrea & Turkenburg, Wim & Faaij, André, 2013. "Techno-economic prospects for CO2 capture from distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 328-347.
    3. Lorenzo Tocci & Tamas Pal & Ioannis Pesmazoglou & Benjamin Franchetti, 2017. "Small Scale Organic Rankine Cycle (ORC): A Techno-Economic Review," Energies, MDPI, vol. 10(4), pages 1-26, March.
    4. Rist, Johannes F. & Dias, Miguel F. & Palman, Michael & Zelazo, Daniel & Cukurel, Beni, 2017. "Economic dispatch of a single micro-gas turbine under CHP operation," Applied Energy, Elsevier, vol. 200(C), pages 1-18.
    5. Muhammad Asif & Muhammad Suleman & Ihtishamul Haq & Syed Asad Jamal, 2018. "Post‐combustion CO2 capture with chemical absorption and hybrid system: current status and challenges," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 998-1031, December.
    6. Best, Thom & Finney, Karen N. & Ingham, Derek B. & Pourkashanian, Mohamed, 2016. "Impact of CO2-enriched combustion air on micro-gas turbine performance for carbon capture," Energy, Elsevier, vol. 115(P1), pages 1138-1147.
    7. Basrawi, Mohamad Firdaus Bin & Yamada, Takanobu & Nakanishi, Kimio & Katsumata, Hideaki, 2012. "Analysis of the performances of biogas-fuelled micro gas turbine cogeneration systems (MGT-CGSs) in middle- and small-scale sewage treatment plants: Comparison of performances and optimization of MGTs," Energy, Elsevier, vol. 38(1), pages 291-304.
    8. Ali, Usman & Font-Palma, Carolina & Nikpey Somehsaraei, Homam & Mansouri Majoumerd, Mohammad & Akram, Muhammad & Finney, Karen N. & Best, Thom & Mohd Said, Nassya B. & Assadi, Mohsen & Pourkashanian, , 2017. "Benchmarking of a micro gas turbine model integrated with post-combustion CO2 capture," Energy, Elsevier, vol. 126(C), pages 475-487.
    9. Jiang, L. & Gonzalez-Diaz, A. & Ling-Chin, J. & Roskilly, A.P. & Smallbone, A.J., 2019. "Post-combustion CO2 capture from a natural gas combined cycle power plant using activated carbon adsorption," Applied Energy, Elsevier, vol. 245(C), pages 1-15.
    10. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    11. Kim, Moon Keun & Baldini, Luca & Leibundgut, Hansjürg & Wurzbacher, Jan Andre, 2020. "Evaluation of the humidity performance of a carbon dioxide (CO2) capture device as a novel ventilation strategy in buildings," Applied Energy, Elsevier, vol. 259(C).
    12. Don Rukmal Liyanage & Kasun Hewage & Hirushie Karunathilake & Gyan Chhipi-Shrestha & Rehan Sadiq, 2021. "Carbon Capture Systems for Building-Level Heating Systems—A Socio-Economic and Environmental Evaluation," Sustainability, MDPI, vol. 13(19), pages 1-30, September.
    13. Marta G. Plaza & Sergio Martínez & Fernando Rubiera, 2020. "CO 2 Capture, Use, and Storage in the Cement Industry: State of the Art and Expectations," Energies, MDPI, vol. 13(21), pages 1-28, October.
    14. Sreedhar, I. & Vaidhiswaran, R. & Kamani, Bansi. M. & Venugopal, A., 2017. "Process and engineering trends in membrane based carbon capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 659-684.
    15. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    16. Peter Viebahn & Alexander Scholz & Ole Zelt, 2019. "The Potential Role of Direct Air Capture in the German Energy Research Program—Results of a Multi-Dimensional Analysis," Energies, MDPI, vol. 12(18), pages 1-27, September.
    17. Giorgetti, S. & Bricteux, L. & Parente, A. & Blondeau, J. & Contino, F. & De Paepe, W., 2017. "Carbon capture on micro gas turbine cycles: Assessment of the performance on dry and wet operations," Applied Energy, Elsevier, vol. 207(C), pages 243-253.
    18. Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
    19. Ben-Mansour, R. & Habib, M.A. & Bamidele, O.E. & Basha, M. & Qasem, N.A.A. & Peedikakkal, A. & Laoui, T. & Ali, M., 2016. "Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations – A review," Applied Energy, Elsevier, vol. 161(C), pages 225-255.
    20. De Paepe, Ward & Montero Carrero, Marina & Bram, Svend & Contino, Francesco & Parente, Alessandro, 2017. "Waste heat recovery optimization in micro gas turbine applications using advanced humidified gas turbine cycle concepts," Applied Energy, Elsevier, vol. 207(C), pages 218-229.
    21. Vögele, Stefan & Rübbelke, Dirk & Mayer, Philip & Kuckshinrichs, Wilhelm, 2018. "Germany’s “No” to carbon capture and storage: Just a question of lacking acceptance?," Applied Energy, Elsevier, vol. 214(C), pages 205-218.
    22. Hetti, Ravihari Kotagoda & Karunathilake, Hirushie & Chhipi-Shrestha, Gyan & Sadiq, Rehan & Hewage, Kasun, 2020. "Prospects of integrating carbon capturing into community scale energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    23. Niall Mac Dowell & Paul S. Fennell & Nilay Shah & Geoffrey C. Maitland, 2017. "The role of CO2 capture and utilization in mitigating climate change," Nature Climate Change, Nature, vol. 7(4), pages 243-249, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marta G. Plaza & Rui P. P. L. Ribeiro, 2022. "Special Issue “CO 2 Capture and Renewable Energy”," Energies, MDPI, vol. 15(14), pages 1-3, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Don Rukmal Liyanage & Kasun Hewage & Hirushie Karunathilake & Gyan Chhipi-Shrestha & Rehan Sadiq, 2021. "Carbon Capture Systems for Building-Level Heating Systems—A Socio-Economic and Environmental Evaluation," Sustainability, MDPI, vol. 13(19), pages 1-30, September.
    2. Kim, Min Jae & Kim, Jeong Ho & Kim, Tong Seop, 2018. "The effects of internal leakage on the performance of a micro gas turbine," Applied Energy, Elsevier, vol. 212(C), pages 175-184.
    3. Mikulčić, Hrvoje & Ridjan Skov, Iva & Dominković, Dominik Franjo & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Tan, Raymond & Duić, Neven & Hidayah Mohamad, Siti Nur & Wang, Xuebin, 2019. "Flexible Carbon Capture and Utilization technologies in future energy systems and the utilization pathways of captured CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    4. Giorgetti, S. & Bricteux, L. & Parente, A. & Blondeau, J. & Contino, F. & De Paepe, W., 2017. "Carbon capture on micro gas turbine cycles: Assessment of the performance on dry and wet operations," Applied Energy, Elsevier, vol. 207(C), pages 243-253.
    5. Pappa, Alessio & Cordier, Marie & Bénard, Pierre & Bricteux, Laurent & De Paepe, Ward, 2022. "How do water and CO2 impact the stability and emissions of the combustion in a micro gas turbine? — A Large Eddy Simulations comparison," Energy, Elsevier, vol. 248(C).
    6. Vadim Fetisov & Adam M. Gonopolsky & Maria Yu. Zemenkova & Schipachev Andrey & Hadi Davardoost & Amir H. Mohammadi & Masoud Riazi, 2023. "On the Integration of CO 2 Capture Technologies for an Oil Refinery," Energies, MDPI, vol. 16(2), pages 1-19, January.
    7. Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
    8. Shen, Wenkai & Xing, Chang & Liu, Haiqing & Liu, Li & Hu, Qiming & Wu, Guohua & Yang, Yujia & Wu, Shaohua & Qiu, Penghua, 2022. "Exhaust gas recirculation effects on flame heat release rate distribution and dynamic characteristics in a micro gas turbine," Energy, Elsevier, vol. 249(C).
    9. Anwar Hamdan Al Assaf & Abdulkarem Amhamed & Odi Fawwaz Alrebei, 2022. "State of the Art in Humidified Gas Turbine Configurations," Energies, MDPI, vol. 15(24), pages 1-32, December.
    10. Imran, Muhammad & Haglind, Fredrik & Asim, Muhammad & Zeb Alvi, Jahan, 2018. "Recent research trends in organic Rankine cycle technology: A bibliometric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 552-562.
    11. José Luis Míguez & Jacobo Porteiro & Raquel Pérez-Orozco & Miguel Ángel Gómez, 2018. "Technology Evolution in Membrane-Based CCS," Energies, MDPI, vol. 11(11), pages 1-18, November.
    12. Turaj S. Faran & Lennart Olsson, 2018. "Geoengineering: neither economical, nor ethical—a risk–reward nexus analysis of carbon dioxide removal," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 18(1), pages 63-77, February.
    13. Lambert, Jerry & Hanel, Andreas & Fendt, Sebastian & Spliethoff, Hartmut, 2023. "Evaluation of sector-coupled energy systems using different foresight horizons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    14. Rafał Ślefarski, 2019. "Study on the Combustion Process of Premixed Methane Flames with CO 2 Dilution at Elevated Pressures," Energies, MDPI, vol. 12(3), pages 1-17, January.
    15. Shen, Peiliang & Jiang, Yi & Zhang, Yangyang & Liu, Songhui & Xuan, Dongxing & Lu, Jianxin & Zhang, Shipeng & Poon, Chi Sun, 2023. "Production of aragonite whiskers by carbonation of fine recycled concrete wastes: An alternative pathway for efficient CO2 sequestration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    16. Chang, Yuan & Gao, Siqi & Ma, Qian & Wei, Ying & Li, Guoping, 2024. "Techno-economic analysis of carbon capture and utilization technologies and implications for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    17. Chen, S. & Shi, W.K. & Yong, J.Y. & Zhuang, Y. & Lin, Q.Y. & Gao, N. & Zhang, X.J. & Jiang, L., 2023. "Numerical study on a structured packed adsorption bed for indoor direct air capture," Energy, Elsevier, vol. 282(C).
    18. Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    19. Cheng Cao & Hejuan Liu & Zhengmeng Hou & Faisal Mehmood & Jianxing Liao & Wentao Feng, 2020. "A Review of CO 2 Storage in View of Safety and Cost-Effectiveness," Energies, MDPI, vol. 13(3), pages 1-45, January.
    20. Quarton, Christopher J. & Samsatli, Sheila, 2020. "The value of hydrogen and carbon capture, storage and utilisation in decarbonising energy: Insights from integrated value chain optimisation," Applied Energy, Elsevier, vol. 257(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2938-:d:795582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.