IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v267y2023ics0360544222034843.html
   My bibliography  Save this article

Model construction and performance analysis for asymmetric compound parabolic concentrator with circular absorber

Author

Listed:
  • Zhang, Xueyan
  • Jiang, Shuoxun
  • Lin, Ziming
  • Gui, Qinghua
  • Chen, Fei

Abstract

Solar CPC (Compound Parabolic Concentrator, CPC) has advantages of static concentration, easy construction and wide application. In this paper, the A-CPC (Asymmetric Compound Parabolic Concentrator, A-CPC) with circular absorber operating at horizontal condition was studied. Based on the edge ray principle, the mathematical model of A-CPC with circular absorber was theoretically constructed, and the concentration performance was verified by the visual experiment. The study found that the average optical efficiency of A-CPC is 42.69% within the whole incidence angle, which is 9.2% higher than the S-CPC (Standard CPC, S-CPC) with the same specification. The results also showed that the maximum acceptable angle and the annual average daily direct radiation collection time of A-CPC reached 69° and 10.82 h, indicating the A-CPC has stronger adaptability to weather conditions. The total annual radiation collection amount of A-CPC, which is 3670 MJ/m2, has surpassed that of S-CPC with 2880 MJ/m2 by 27.4%. Economic analysis reveals that A-CPC can effectively save the total cost and has more friendly potential in application to engineering.

Suggested Citation

  • Zhang, Xueyan & Jiang, Shuoxun & Lin, Ziming & Gui, Qinghua & Chen, Fei, 2023. "Model construction and performance analysis for asymmetric compound parabolic concentrator with circular absorber," Energy, Elsevier, vol. 267(C).
  • Handle: RePEc:eee:energy:v:267:y:2023:i:c:s0360544222034843
    DOI: 10.1016/j.energy.2022.126597
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222034843
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126597?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Korres, D.N. & Tzivanidis, C., 2019. "Numerical investigation and optimization of an experimentally analyzed solar CPC," Energy, Elsevier, vol. 172(C), pages 57-67.
    2. Tripanagnostopoulos, Y. & Yianoulis, P. & Papaefthimiou, S. & Souliotis, M. & Nousia, Th., 1999. "Cost effective asymmetric CPC solar collectors," Renewable Energy, Elsevier, vol. 16(1), pages 628-631.
    3. Deng, Chenggang & Chen, Fei, 2020. "Preliminary investigation on photo-thermal performance of a novel embedded building integrated solar evacuated tube collector with compound parabolic concentrator," Energy, Elsevier, vol. 202(C).
    4. Fan, Man & You, Shijun & Xia, Junbao & Zheng, Wandong & Zhang, Huan & Liang, Hongbo & Li, Xianli & Li, Bojia, 2018. "An optimized Monte Carlo ray tracing optical simulation model and its applications to line-focus concentrating solar collectors," Applied Energy, Elsevier, vol. 225(C), pages 769-781.
    5. Olabi, A.G. & Abdelkareem, Mohammad Ali, 2022. "Renewable energy and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Lu, Wei & Wu, Yupeng & Eames, Philip, 2018. "Design and development of a Building Façade Integrated Asymmetric Compound Parabolic Photovoltaic concentrator (BFI-ACP-PV)," Applied Energy, Elsevier, vol. 220(C), pages 325-336.
    7. Harmim, A. & Merzouk, M. & Boukar, M. & Amar, M., 2012. "Performance study of a box-type solar cooker employing an asymmetric compound parabolic concentrator," Energy, Elsevier, vol. 47(1), pages 471-480.
    8. Pouriya Nasseriyan & Hossein Afzali Gorouh & João Gomes & Diogo Cabral & Mazyar Salmanzadeh & Tiffany Lehmann & Abolfazl Hayati, 2020. "Numerical and Experimental Study of an Asymmetric CPC-PVT Solar Collector," Energies, MDPI, vol. 13(7), pages 1-21, April.
    9. Tripanagnostopoulos, Y. & Souliotis, M., 2004. "Integrated collector storage solar systems with asymmetric CPC reflectors," Renewable Energy, Elsevier, vol. 29(2), pages 223-248.
    10. Chen, Xiaomeng & Yang, Xudong, 2021. "Solar collector with asymmetric compound parabolic concentrator for winter energy harvesting and summer overheating reduction: Concept and prototype device," Renewable Energy, Elsevier, vol. 173(C), pages 92-104.
    11. Chen, Fei & Liu, Yang, 2022. "Model construction and performance investigation of multi-section compound parabolic concentrator with solar vacuum tube," Energy, Elsevier, vol. 250(C).
    12. Xuan, Qingdong & Li, Guiqiang & Yang, Honglun & Gao, Cai & Jiang, Bin & Liu, Xiangnong & Ji, Jie & Zhao, Xudong & Pei, Gang, 2021. "Performance evaluation for the dielectric asymmetric compound parabolic concentrator with almost unity angular acceptance efficiency," Energy, Elsevier, vol. 233(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Huawei & Zhang, Jiazhen & Pei, Maoqing & Ju, Xinyu & Ju, Xing & Xu, Chao, 2024. "Optical, electrical, and thermal performance enhancement for a concentrating photovoltaic/thermal system using optimized polynomial compound parabolic concentrators," Applied Energy, Elsevier, vol. 358(C).
    2. Evangelos Bellos & Dimitrios N. Korres & Christos Tzivanidis, 2023. "Investigation of a Compound Parabolic Collector with a Flat Glazing," Sustainability, MDPI, vol. 15(5), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yang & Gui, Qinghua & Xiao, Liye & Zheng, Canyang & Zhang, Youyang & Chen, Fei, 2023. "Photothermal conversion performance based on optimized design of multi-section compound parabolic concentrator," Renewable Energy, Elsevier, vol. 209(C), pages 286-297.
    2. Devanarayanan, K. & Kalidasa Murugavel, K., 2014. "Integrated collector storage solar water heater with compound parabolic concentrator – development and progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 51-64.
    3. Liu, Huawei & Zhang, Jiazhen & Pei, Maoqing & Ju, Xinyu & Ju, Xing & Xu, Chao, 2024. "Optical, electrical, and thermal performance enhancement for a concentrating photovoltaic/thermal system using optimized polynomial compound parabolic concentrators," Applied Energy, Elsevier, vol. 358(C).
    4. Xiao, Liye & Zheng, Canyang & Shi, Kuang & Chen, Fei, 2023. "Model construction and performance research of the optimized compound parabolic concentrator based on critical truncation and multi-section congruent," Renewable Energy, Elsevier, vol. 217(C).
    5. Zhang, Xueyan & Gao, Teng & Liu, Yang & Chen, Fei, 2023. "Construction and concentrating performance of a critically truncated compound parabolic concentrator without light escape," Energy, Elsevier, vol. 269(C).
    6. Jaaz, Ahed Hameed & Hasan, Husam Abdulrasool & Sopian, Kamaruzzaman & Haji Ruslan, Mohd Hafidz Bin & Zaidi, Saleem Hussain, 2017. "Design and development of compound parabolic concentrating for photovoltaic solar collector: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1108-1121.
    7. Faisal Masood & Nursyarizal Bin Mohd Nor & Perumal Nallagownden & Irraivan Elamvazuthi & Rahman Saidur & Mohammad Azad Alam & Javed Akhter & Mohammad Yusuf & Mubbashar Mehmood & Mujahid Ali, 2022. "A Review of Recent Developments and Applications of Compound Parabolic Concentrator-Based Hybrid Solar Photovoltaic/Thermal Collectors," Sustainability, MDPI, vol. 14(9), pages 1-30, May.
    8. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    9. Xia, En-Tong & Xu, Jin-Tao & Chen, Fei, 2021. "Investigation on structural and optical characteristics for an improved compound parabolic concentrator based on cylindrical absorber," Energy, Elsevier, vol. 219(C).
    10. Singh, Ramkishore & Lazarus, Ian J. & Souliotis, Manolis, 2016. "Recent developments in integrated collector storage (ICS) solar water heaters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 270-298.
    11. Zhang, Xueyan & Wang, Xin & Li, Zhongzhe & Luo, Huilong & Chen, Fei, 2023. "Surface construction and optical performance analysis of compound parabolic concentrator with concentrating surface separated from absorber," Energy, Elsevier, vol. 282(C).
    12. Parupudi, Ranga Vihari & Singh, Harjit & Kolokotroni, Maria, 2020. "Low Concentrating Photovoltaics (LCPV) for buildings and their performance analyses," Applied Energy, Elsevier, vol. 279(C).
    13. Deng, Cheng-gang & Chen, Fei, 2021. "Model verification and photo-thermal conversion assessment of a novel facade embedded compound parabolic concentrator," Energy, Elsevier, vol. 220(C).
    14. Rui Li & Guomin Cui, 2022. "Comprehensive Performance Evaluation of a Dual-Function Active Solar Thermal Façade System Based on Energy, Economic and Environmental Analysis in China," Energies, MDPI, vol. 15(11), pages 1-19, June.
    15. Kamal, Md. Mustafa & Saini, R.P., 2023. "Performance investigations of hybrid hydrokinetic turbine rotor with different system and operating parameters," Energy, Elsevier, vol. 267(C).
    16. A. G. Olabi & Khaled Obaideen & Mohammad Ali Abdelkareem & Maryam Nooman AlMallahi & Nabila Shehata & Abdul Hai Alami & Ayman Mdallal & Asma Ali Murah Hassan & Enas Taha Sayed, 2023. "Wind Energy Contribution to the Sustainable Development Goals: Case Study on London Array," Sustainability, MDPI, vol. 15(5), pages 1-22, March.
    17. Han, X.C. & Xu, H.J. & Hua, W.S., 2023. "Decomposition performance and kinetics analysis of magnesium hydroxide regulated with C/N/Ti/Si additives for thermochemical heat storage," Applied Energy, Elsevier, vol. 344(C).
    18. Fan, Siyuan & Wang, Xiao & Wang, Zun & Sun, Bo & Zhang, Zhenhai & Cao, Shengxian & Zhao, Bo & Wang, Yu, 2022. "A novel image enhancement algorithm to determine the dust level on photovoltaic (PV) panels," Renewable Energy, Elsevier, vol. 201(P1), pages 172-180.
    19. Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    20. Evangelos Bellos & Dimitrios N. Korres & Christos Tzivanidis, 2023. "Investigation of a Compound Parabolic Collector with a Flat Glazing," Sustainability, MDPI, vol. 15(5), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:267:y:2023:i:c:s0360544222034843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.