IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223018261.html
   My bibliography  Save this article

Surface construction and optical performance analysis of compound parabolic concentrator with concentrating surface separated from absorber

Author

Listed:
  • Zhang, Xueyan
  • Wang, Xin
  • Li, Zhongzhe
  • Luo, Huilong
  • Chen, Fei

Abstract

For the S-CPC (Standard Compound Parabolic Concentrator, S-CPC) based on plane structure, the concentrating surface is connected to the absorber, and the temperature of the concentrating surface and the absorber is significant different during working. The local concentrated thermal stress can easily cause thermal deformation of the concentrating surface. The conventional solution is to form a gap between the concentrating surface and the absorber, which can effectively interdict the thermal stress. However, this would cause the light leakage from the gap, resulting the reduction of the optical efficiency of S-CPC. Therefore, the SCSA-CPC (Separation of Concentrator Surface and Absorber CPC, SCSA-CPC) without gap loss is studied in present research. The mathematical model of SCSA-CPC without gap loss is constructed by using non-imaging optical theory, the concentrating performance and working characteristics of SCSA-CPC are verified through experiments. The research also shows that the optical efficiency of SCSA-CPC is better than S-CPC, and the energy flux distribution on the absorber surface is more uniform. When the annual radiation collection amount of S-CPC is 2008.02 MJ/m2, the value of SCSA-CPC is 2009.00 MJ/m2. SCSA-CPC not only achieves the separation of the concentrating surface and absorber, but also slightly improves the collection capacity of solar radiation.

Suggested Citation

  • Zhang, Xueyan & Wang, Xin & Li, Zhongzhe & Luo, Huilong & Chen, Fei, 2023. "Surface construction and optical performance analysis of compound parabolic concentrator with concentrating surface separated from absorber," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223018261
    DOI: 10.1016/j.energy.2023.128432
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223018261
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128432?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Korres, D.N. & Tzivanidis, C., 2019. "Numerical investigation and optimization of an experimentally analyzed solar CPC," Energy, Elsevier, vol. 172(C), pages 57-67.
    2. Ling, Yunyi & Li, Wenjia & Jin, Jian & Yu, Yuhang & Hao, Yong & Jin, Hongguang, 2020. "A spectral-splitting photovoltaic-thermochemical system for energy storage and solar power generation," Applied Energy, Elsevier, vol. 260(C).
    3. Rajput, Usman Jamil & Yang, Jun, 2018. "Comparison of heat sink and water type PV/T collector for polycrystalline photovoltaic panel cooling," Renewable Energy, Elsevier, vol. 116(PA), pages 479-491.
    4. Hulin Huang & Yuehong Su & Yibing Gao & Saffa Riffat, 2011. "Design analysis of a Fresnel lens concentrating PV cell," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 6(3), pages 165-170, January.
    5. Qiang Wang & Jinfu Wang & Runsheng Tang, 2016. "Design and Optical Performance of Compound Parabolic Solar Concentrators with Evacuated Tube as Receivers," Energies, MDPI, vol. 9(10), pages 1-16, October.
    6. Ngoc Hai Vu & Seoyong Shin, 2016. "A Concentrator Photovoltaic System Based on a Combination of Prism-Compound Parabolic Concentrators," Energies, MDPI, vol. 9(8), pages 1-13, August.
    7. Li, Guiqiang & Xuan, Qingdong & Zhao, Xudong & Pei, Gang & Ji, Jie & Su, Yuehong, 2018. "A novel concentrating photovoltaic/daylighting control system: Optical simulation and preliminary experimental analysis," Applied Energy, Elsevier, vol. 228(C), pages 1362-1372.
    8. Xuan, Qingdong & Li, Guiqiang & Yang, Honglun & Gao, Cai & Jiang, Bin & Liu, Xiangnong & Ji, Jie & Zhao, Xudong & Pei, Gang, 2021. "Performance evaluation for the dielectric asymmetric compound parabolic concentrator with almost unity angular acceptance efficiency," Energy, Elsevier, vol. 233(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xueyan & Li, Jiayue & Chen, Jun & Chen, Fei, 2023. "Preliminary investigation on optical performance of linear fresnel lens coupled compound parabolic concentrator," Energy, Elsevier, vol. 278(PA).
    2. Liu, Yang & Gui, Qinghua & Xiao, Liye & Zheng, Canyang & Zhang, Youyang & Chen, Fei, 2023. "Photothermal conversion performance based on optimized design of multi-section compound parabolic concentrator," Renewable Energy, Elsevier, vol. 209(C), pages 286-297.
    3. Xu, Jintao & Chen, Fei & Xia, Entong & Gao, Chong & Deng, Chenggang, 2020. "An optimization design method and optical performance analysis on multi-sectioned compound parabolic concentrator with cylindrical absorber," Energy, Elsevier, vol. 197(C).
    4. Chen, Fei & Gui, Qinghua, 2022. "Construction and analysis of a compound parabolic concentrator to eliminate light escape in the interlayer of solar vacuum tube," Renewable Energy, Elsevier, vol. 191(C), pages 225-237.
    5. Li, Yongcai & Jiao, Feng & Chen, Fei & Zhang, Zhenhua, 2021. "Design optimization and optical performance analysis on multi-sectioned compound parabolic concentrator with plane absorber," Renewable Energy, Elsevier, vol. 168(C), pages 913-926.
    6. Xiao, Liye & Zheng, Canyang & Shi, Kuang & Chen, Fei, 2023. "Model construction and performance research of the optimized compound parabolic concentrator based on critical truncation and multi-section congruent," Renewable Energy, Elsevier, vol. 217(C).
    7. Zhang, Xueyan & Jiang, Shuoxun & Lin, Ziming & Gui, Qinghua & Chen, Fei, 2023. "Model construction and performance analysis for asymmetric compound parabolic concentrator with circular absorber," Energy, Elsevier, vol. 267(C).
    8. Abdalqader Ahmad & Helena Navarro & Saikat Ghosh & Yulong Ding & Jatindra Nath Roy, 2021. "Evaluation of New PCM/PV Configurations for Electrical Energy Efficiency Improvement through Thermal Management of PV Systems," Energies, MDPI, vol. 14(14), pages 1-18, July.
    9. Cesar Lucio & Omar Behar & Bassam Dally, 2023. "Techno-Economic Assessment of CPVT Spectral Splitting Technology: A Case Study on Saudi Arabia," Energies, MDPI, vol. 16(14), pages 1-23, July.
    10. Javed Akhter & Syed I. Gilani & Hussain H. Al-Kayiem & Muzaffar Ali, 2019. "Optical Performance Analysis of Single Flow Through and Concentric Tube Receiver Coupled with a Modified CPC Collector Under Different Configurations," Energies, MDPI, vol. 12(21), pages 1-24, October.
    11. Xuan, Qingdong & Li, Guiqiang & Lu, Yashun & Zhao, Bin & Zhao, Xudong & Pei, Gang, 2019. "The design, construction and experimental characterization of a novel concentrating photovoltaic/daylighting window for green building roof," Energy, Elsevier, vol. 175(C), pages 1138-1152.
    12. Santhakumari, Manju & Sagar, Netramani, 2019. "A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 83-100.
    13. Li, Guiqiang & Xuan, Qingdong & Akram, M.W. & Golizadeh Akhlaghi, Yousef & Liu, Haowen & Shittu, Samson, 2020. "Building integrated solar concentrating systems: A review," Applied Energy, Elsevier, vol. 260(C).
    14. Xuan, Qingdong & Li, Guiqiang & Lu, Yashun & Zhao, Bin & Wang, Fuqiang & Pei, Gang, 2021. "Daylighting utilization and uniformity comparison for a concentrator-photovoltaic window in energy saving application on the building," Energy, Elsevier, vol. 214(C).
    15. Faisal Masood & Nursyarizal Bin Mohd Nor & Perumal Nallagownden & Irraivan Elamvazuthi & Rahman Saidur & Mohammad Azad Alam & Javed Akhter & Mohammad Yusuf & Mubbashar Mehmood & Mujahid Ali, 2022. "A Review of Recent Developments and Applications of Compound Parabolic Concentrator-Based Hybrid Solar Photovoltaic/Thermal Collectors," Sustainability, MDPI, vol. 14(9), pages 1-30, May.
    16. Hong, Wenpeng & Li, Boyu & Li, Haoran & Niu, Xiaojuan & Li, Yan & Lan, Jingrui, 2022. "Recent progress in thermal energy recovery from the decoupled photovoltaic/thermal system equipped with spectral splitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    17. Jianfeng Lu & Yarong Wang & Jing Ding, 2020. "Nonuniform Heat Transfer Model and Performance of Molten Salt Cavity Receiver," Energies, MDPI, vol. 13(4), pages 1-19, February.
    18. Bushra, Nayab, 2023. "Parametric model of window-integrated planer Cassegrain concentrator-based shading system (PCSS)," Applied Energy, Elsevier, vol. 340(C).
    19. Zhang, Xueyan & Zhang, Youyang & Zheng, Canyang & Chen, Fei, 2023. "Model construction and performance investigation of compound parabolic concentrator based on satellite solar wing photovoltaic arrays," Energy, Elsevier, vol. 285(C).
    20. Zhao, Ning & Wang, Jiangjiang & Tian, Yuyang & Yao, Zibo & Yan, Suying, 2024. "Numerical study on a novel solar-thermal-reaction system for clean hydrogen production of methanol-steam reforming," Renewable Energy, Elsevier, vol. 222(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223018261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.