IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v267y2023ics0360544222034211.html
   My bibliography  Save this article

Modeling of multi-field gas desorption-diffusion in coal: A new insight into the bidisperse model

Author

Listed:
  • Wang, Kai
  • Wang, Yanhai
  • Xu, Chao
  • Guo, Haijun
  • Xu, Zhiyuan
  • Liu, Yifu
  • Dong, Huzi
  • Ju, Yang

Abstract

Gas desorption-diffusion plays a pivotal role in the coalbed methane extraction, CO2 geological sequestration, CO2 enhanced coalbed methane extraction and coal and gas outburst disasters due to the large amount of adsorbed gas in coal seam. It is of great significance to investigate the gas diffusion mechanisms in coal. The traditional bidisperse model considers that the macropores and micropores are in parallel and independent with each other, neglecting the series structures between the macropores and micropores. In this paper, a coupling multi-field gas desorption-diffusion model was constructed, in which the mechanical field, thermal field and gas diffusion field were fully coupled and the parallel and series structures between the macropores and micropores were both considered, then solved with COMSOL Multiphysics software. The isothermal gas desorption-diffusion experiments of coal particles with different coal particle size were carried out, and the experiment data were used to validate our model. The results show that the model proposed in this paper can be simplified into two cases, in which Model Ⅰ is the parallel model, where all the micropores are in parallel with macropores, and Model Ⅱ is the series model, where all the micropores are in series with macropores. Model Ⅰ and Model Ⅱ characterize the gas diffusion process in coal particles in different ways, where the gas diffusion process in micropores is developed from the boundary to the center of the coal particles in Model Ⅰ, while the gas diffusion in micropores at different locations of coal particles is simultaneous, resulting in nearly uniform distribution of gas pressure in the micropores. No matter how complex the pore structure in coal matrix is, it is the combination of the parallel structures and series structures between adjacent pores. The research results of this paper are instructive to the gas diffusion in coal and other fields such as shale gas extraction.

Suggested Citation

  • Wang, Kai & Wang, Yanhai & Xu, Chao & Guo, Haijun & Xu, Zhiyuan & Liu, Yifu & Dong, Huzi & Ju, Yang, 2023. "Modeling of multi-field gas desorption-diffusion in coal: A new insight into the bidisperse model," Energy, Elsevier, vol. 267(C).
  • Handle: RePEc:eee:energy:v:267:y:2023:i:c:s0360544222034211
    DOI: 10.1016/j.energy.2022.126534
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222034211
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126534?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Chaojun & Elsworth, Derek & Li, Sheng & Zhou, Lijun & Yang, Zhenhua & Song, Yu, 2019. "Thermo-hydro-mechanical-chemical couplings controlling CH4 production and CO2 sequestration in enhanced coalbed methane recovery," Energy, Elsevier, vol. 173(C), pages 1054-1077.
    2. Liu, Ting & Lin, Baiquan & Fu, Xuehai & Gao, Yabin & Kong, Jia & Zhao, Yang & Song, Haoran, 2020. "Experimental study on gas diffusion dynamics in fractured coal: A better understanding of gas migration in in-situ coal seam," Energy, Elsevier, vol. 195(C).
    3. Bai, Yang & Lin, Hai-Fei & Li, Shu-Gang & Yan, Min & Long, Hang, 2021. "Molecular simulation of N2 and CO2 injection into a coal model containing adsorbed methane at different temperatures," Energy, Elsevier, vol. 219(C).
    4. Marcin Karbownik & Jerzy Krawczyk & Katarzyna Godyń & Tomasz Schlieter & Jiří Ščučka, 2021. "Analysis of the Influence of Coal Petrography on the Proper Application of the Unipore and Bidisperse Models of Methane Diffusion," Energies, MDPI, vol. 14(24), pages 1-20, December.
    5. Bai, Gang & Su, Jun & Li, Xueming & Guo, Chunsheng & Han, Mingxu & Zhou, Xihua & Fan, Chaojun, 2022. "Step-by-step CO2 injection pressure for enhanced coal seam gas recovery: A laboratory study," Energy, Elsevier, vol. 260(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Haijun & Yu, Yingjie & Wang, Yunhe & Wang, Kai & Yuan, Liang & Xu, Chao & Ren, Bo, 2024. "Experimental study on the desorption law and diffusion kinetic characteristics of gas in raw coal and tectonic coal," Energy, Elsevier, vol. 289(C).
    2. Shi, Yu & Lin, Baiquan & Liu, Ting & Liu, Tong & Zhang, Xiangliang & Yang, Wei, 2024. "Study on the influence of stress constraint conditions on multi-scale gas emission characteristics in in-situ coal," Energy, Elsevier, vol. 290(C).
    3. Xiangguo Kong & Tianshuo Zhao & Yuchu Cai & Di He, 2024. "Numerical Multifield Coupling Model of Stress Evolution and Gas Migration: Application of Disaster Prediction and Mining Sustainability Development," Sustainability, MDPI, vol. 16(9), pages 1-21, April.
    4. Zhou, Aitao & Li, Jingwen & Gong, Weili & Wang, Kai & Du, Changang, 2023. "Theoretical and numerical study on the contribution of multi-hole arrangement to coalbed methane extraction," Energy, Elsevier, vol. 284(C).
    5. Xie, Senlin & Zhou, Hongwei & Jia, Wenhao & Gu, Yongsheng & Cao, Yanpeng & Liu, Zelin, 2024. "Spatial evolution of pore and fracture structures in coal under unloading confining pressure: A stratified nuclear magnetic resonance approach," Energy, Elsevier, vol. 289(C).
    6. Yang, Gang & Song, Dazhao & Wang, Man & Qiu, Liming & He, Xueqiu & Khan, Majid & Qian, Sun, 2024. "New insights into dynamic disaster monitoring through asynchronous deformation induced coal-gas outburst mechanism of tectonic and raw coal seams," Energy, Elsevier, vol. 295(C).
    7. Xu, Chao & Wang, Wenjing & Wang, Kai & Zhou, Aitao & Guo, Lin & Yang, Tong, 2023. "Filling–adsorption mechanism and diffusive transport characteristics of N2/CO2 in coal: Experiment and molecular simulation," Energy, Elsevier, vol. 282(C).
    8. Wei, Jiaqi & Su, Erlei & Xu, Guangwei & Yang, Yuqiang & Han, Shuran & Chen, Xiangjun & Chen, Haidong & An, Fenghua, 2024. "Comparative analysis of permeability rebound and recovery of tectonic and intact coal: Implications for coalbed methane recovery in tectonic coal reservoirs," Energy, Elsevier, vol. 301(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Haoran & Zhong, Zheng & Lin, Baiquan, 2023. "Impact of methane gas diffusion in coal on elastic modulus and porosity: Modeling and analysis," Energy, Elsevier, vol. 271(C).
    2. Shi, Yu & Lin, Baiquan & Liu, Ting & Liu, Tong & Zhang, Xiangliang & Yang, Wei, 2024. "Study on the influence of stress constraint conditions on multi-scale gas emission characteristics in in-situ coal," Energy, Elsevier, vol. 290(C).
    3. Lin, Haifei & Li, Botao & Li, Shugang & Qin, Lei & Wei, Zongyong & Wang, Pei & Luo, Rongwei, 2023. "Numerical investigation of temperature distribution and thermal damage of heterogeneous coal under liquid nitrogen freezing," Energy, Elsevier, vol. 267(C).
    4. Wang, Liang & Wu, Songwei & Li, Ziwei & An, Fenghua & Lu, Zhuang & Su, Sheng & Jiang, Changbao, 2024. "Diffusion distance variations in coal pulverization based on equivalent matrix size: Implications for coal and gas outburst indicators," Energy, Elsevier, vol. 305(C).
    5. Fan, Lurong & Xu, Jiuping, 2020. "Authority–enterprise equilibrium based mixed subsidy mechanism for carbon reduction and energy utilization in the coalbed methane industry," Energy Policy, Elsevier, vol. 147(C).
    6. Cai, Mingyu & Su, Yuliang & Elsworth, Derek & Li, Lei & Fan, Liyao, 2021. "Hydro-mechanical-chemical modeling of sub-nanopore capillary-confinement on CO2-CCUS-EOR," Energy, Elsevier, vol. 225(C).
    7. Marcin Karbownik & Agnieszka Dudzińska & Jarosław Strzymczok, 2022. "Multi-Parameter Analysis of Gas Losses Occurring during the Determination of Methane-Bearing Capacity in Hard Coal Beds," Energies, MDPI, vol. 15(9), pages 1-17, April.
    8. Ziwen Li & Hongjin Yu & Yansong Bai, 2022. "Numerical Simulation of CO 2 -ECBM Based on Multi-Physical Field Coupling Model," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    9. Zhao, Jingyu & Wang, Tao & Deng, Jun & Shu, Chi-Min & Zeng, Qiang & Guo, Tao & Zhang, Yuxuan, 2020. "Microcharacteristic analysis of CH4 emissions under different conditions during coal spontaneous combustion with high-temperature oxidation and in situ FTIR," Energy, Elsevier, vol. 209(C).
    10. Zhang, Tianjun & Wu, Jinyu & Pang, Mingkun & Liu, Rongtao & Zhu, Shipeng & Pan, Hongyu, 2024. "Experimental study on the negative pressure loss generated by the gas influx process around a long borehole," Energy, Elsevier, vol. 296(C).
    11. Li, Zhongbei & Ren, Ting & Li, Xiangchun & Cheng, Yuanping & He, Xueqiu & Lin, Jia & Qiao, Ming & Yang, Xiaohan, 2023. "Full-scale pore structure characterization of different rank coals and its impact on gas adsorption capacity: A theoretical model and experimental study," Energy, Elsevier, vol. 277(C).
    12. Liu, Zhengdong & Hu, Ze & Zhu, Wancheng & Zhao, Tingting & Liu, Shuyuan & Guo, Zhiguo & Sun, Chen & Bai, Gang, 2024. "Effect of coal permeability evolution on CO2 storage capacity under phase partial pressure in ScCO2-ECBM processes," Energy, Elsevier, vol. 297(C).
    13. Wenjie Xu & Xigui Zheng & Cancan Liu & Peng Li & Boyang Li & Kundai Michael Shayanowako & Jiyu Wang & Xiaowei Guo & Guowei Lai, 2022. "Numerical Simulation Study of High-Pressure Air Injection to Promote Gas Drainage," Sustainability, MDPI, vol. 14(21), pages 1-15, October.
    14. Liu, Huang & Yao, Desong & Yang, Bowen & Li, Huashi & Guo, Ping & Du, Jianfen & Wang, Jian & Yang, Shuokong & Wen, Lianhui, 2022. "Experimental investigation on the mechanism of low permeability natural gas extraction accompanied by carbon dioxide sequestration," Energy, Elsevier, vol. 253(C).
    15. Gao, Xinyuan & Yang, Shenglai & Tian, Lerao & Shen, Bin & Bi, Lufei & Zhang, Yiqi & Wang, Mengyu & Rui, Zhenhua, 2024. "System and multi-physics coupling model of liquid-CO2 injection on CO2 storage with enhanced gas recovery (CSEGR) framework," Energy, Elsevier, vol. 294(C).
    16. Huang, Haiping & Wang, Eric, 2020. "A laboratory investigation of the impact of solvent treatment on the permeability of bituminous coal from Western Canada with a focus on microbial in-situ processing of coals," Energy, Elsevier, vol. 210(C).
    17. Zhao, Li & Guanhua, Ni & Yan, Wang & Hehe, Jiang & Yongzan, Wen & Haoran, Dou & Mao, Jing, 2022. "Semi-homogeneous model of coal based on 3D reconstruction of CT images and its seepage-deformation characteristics," Energy, Elsevier, vol. 259(C).
    18. Zhang, Chaolin & Wang, Enyuan & Li, Bobo & Kong, Xiangguo & Xu, Jiang & Peng, Shoujian & Chen, Yuexia, 2023. "Laboratory experiments of CO2-enhanced coalbed methane recovery considering CO2 sequestration in a coal seam," Energy, Elsevier, vol. 262(PA).
    19. Lan, Wenjian & Wang, Hanxiang & Zhang, Xin & Fan, Hongbo & Feng, Kun & Liu, Yanxin & Sun, Bingyu, 2020. "Investigation on the mechanism of micro-cracks generated by microwave heating in coal and rock," Energy, Elsevier, vol. 206(C).
    20. Bai, Gang & Su, Jun & Zhang, Zunguo & Lan, Anchang & Zhou, Xihua & Gao, Fei & Zhou, Jianbin, 2022. "Effect of CO2 injection on CH4 desorption rate in poor permeability coal seams: An experimental study," Energy, Elsevier, vol. 238(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:267:y:2023:i:c:s0360544222034211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.