IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v305y2024ics036054422402173x.html
   My bibliography  Save this article

Diffusion distance variations in coal pulverization based on equivalent matrix size: Implications for coal and gas outburst indicators

Author

Listed:
  • Wang, Liang
  • Wu, Songwei
  • Li, Ziwei
  • An, Fenghua
  • Lu, Zhuang
  • Su, Sheng
  • Jiang, Changbao

Abstract

Coal matrix is rich in complex pores, constituting channels for gas diffusion. Diffusion distance plays a crucial role in diffusion resistance, directly influencing the intermediate processes of “desorption-diffusion-seepage” in coal. However, current research often quantifies diffusion distance using average particle size, failing to represent the true diffusion distance. In this study, we introduce a novel concept of equivalent matrix size based on gas desorption experiments. Diffusion coefficients were obtained by fitting the time-varying diffusion model, and the mass exchange of interporosity flow was estimated. Additionally, temporal matrix shape factors were analyzed to determine the matrix size with the aid of numerical simulation. Results demonstrate a temporal evolution in matrix shape factors, namely a decrease in the initial stage, stability in the medium stage, and inconsistency in the later stage. During pulverization, fracture and matrix damage occur simultaneously, with fractures undergoing more severe fragmentation. Lost time significantly impacts the accuracy of accessing lost gas amount ML and outburst indicator K1. Upon incorporating the matrix size, ML for XT and QD samples were overestimated by 0.83 cm3/g and 0.14 cm3/g, and K1 was overestimated by 21.2 % and 2.7 %, which could help establish a theoretical foundation for predicting coal and gas outbursts.

Suggested Citation

  • Wang, Liang & Wu, Songwei & Li, Ziwei & An, Fenghua & Lu, Zhuang & Su, Sheng & Jiang, Changbao, 2024. "Diffusion distance variations in coal pulverization based on equivalent matrix size: Implications for coal and gas outburst indicators," Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:energy:v:305:y:2024:i:c:s036054422402173x
    DOI: 10.1016/j.energy.2024.132399
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422402173X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132399?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:305:y:2024:i:c:s036054422402173x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.