IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v305y2024ics0360544224021844.html
   My bibliography  Save this article

Evaluation of CO2-enhanced gas recovery and storage through coupled non-isothermal compositional two-phase flow and geomechanics modelling

Author

Listed:
  • Chen, Min
  • Geng, Jianhua
  • Cui, Linyong
  • Xu, Fengyin
  • Thomas, Hywel

Abstract

CO2 injection into unconventional gas reservoir has been recognized as a promising approach to enhance unconventional gas recovery (CO2-EUGR) and sequester CO2 geologically. The CO2-EUGR is a complex multi-physics coupling process. To accurately assess the effectiveness of different injection strategies, this paper firstly presents a non-isothermal compositional two-phase flow model coupling with geomechanics, in which a multicomponent adsorption kinetics is incorporated to separate free phase and adsorbed phase. A hybrid numerical approach combining EbFVM and GFEM is used for numerical solutions. The performance of different injection strategies for CO2-EUGR is evaluated. The results indicate that CO2 injection is able to improve CH4 recovery significantly, over 90 % of injected CO2 can be adsorbed in reservoirs, The performance of CO2-EUGR is permeability dependent, the displacement effect occurs earlier when reservoir permeability is higher; Increase in temperature of injected gas and mixed CO2/N2 injection can further improve CH4 recovery, especially for low permeability gas reservoirs; Mixed gas injection also enables displacement effect to occur earlier; Cyclic injection can hardly lead to increase in CH4 production, especially when reservoir permeability is higher, while it can cause an increase in amount of adsorbed CO2 during injection period. Based on these findings, a geothermal-assisted CO2-EUGR method is proposed.

Suggested Citation

  • Chen, Min & Geng, Jianhua & Cui, Linyong & Xu, Fengyin & Thomas, Hywel, 2024. "Evaluation of CO2-enhanced gas recovery and storage through coupled non-isothermal compositional two-phase flow and geomechanics modelling," Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224021844
    DOI: 10.1016/j.energy.2024.132410
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224021844
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132410?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Jia & Ren, Ting & Cheng, Yuanping & Nemcik, Jan & Wang, Gongda, 2019. "Cyclic N2 injection for enhanced coal seam gas recovery: A laboratory study," Energy, Elsevier, vol. 188(C).
    2. Fengshuang Du & Bahareh Nojabaei, 2019. "A Review of Gas Injection in Shale Reservoirs: Enhanced Oil/Gas Recovery Approaches and Greenhouse Gas Control," Energies, MDPI, vol. 12(12), pages 1-33, June.
    3. Patel, Milan J. & May, Eric F. & Johns, Michael L., 2016. "High-fidelity reservoir simulations of enhanced gas recovery with supercritical CO2," Energy, Elsevier, vol. 111(C), pages 548-559.
    4. Tang, Chao & Zhou, Wen & Chen, Zhangxin & Wei, Jiabao, 2023. "Numerical simulation of CO2 sequestration in shale gas reservoirs at reservoir scale coupled with enhanced gas recovery," Energy, Elsevier, vol. 277(C).
    5. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    6. Fan, Chaojun & Elsworth, Derek & Li, Sheng & Zhou, Lijun & Yang, Zhenhua & Song, Yu, 2019. "Thermo-hydro-mechanical-chemical couplings controlling CH4 production and CO2 sequestration in enhanced coalbed methane recovery," Energy, Elsevier, vol. 173(C), pages 1054-1077.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenjie Xu & Xigui Zheng & Cancan Liu & Peng Li & Boyang Li & Kundai Michael Shayanowako & Jiyu Wang & Xiaowei Guo & Guowei Lai, 2022. "Numerical Simulation Study of High-Pressure Air Injection to Promote Gas Drainage," Sustainability, MDPI, vol. 14(21), pages 1-15, October.
    2. Zhang, Chaolin & Wang, Enyuan & Li, Bobo & Kong, Xiangguo & Xu, Jiang & Peng, Shoujian & Chen, Yuexia, 2023. "Laboratory experiments of CO2-enhanced coalbed methane recovery considering CO2 sequestration in a coal seam," Energy, Elsevier, vol. 262(PA).
    3. Lan, Wenjian & Wang, Hanxiang & Zhang, Xin & Fan, Hongbo & Feng, Kun & Liu, Yanxin & Sun, Bingyu, 2020. "Investigation on the mechanism of micro-cracks generated by microwave heating in coal and rock," Energy, Elsevier, vol. 206(C).
    4. Sanchez-Vicente, Yolanda & Tay, Weparn J. & Al Ghafri, Saif Z. & Trusler, J.P. Martin, 2018. "Thermodynamics of carbon dioxide-hydrocarbon systems," Applied Energy, Elsevier, vol. 220(C), pages 629-642.
    5. Karolina Novak Mavar & Nediljka Gaurina-Međimurec & Lidia Hrnčević, 2021. "Significance of Enhanced Oil Recovery in Carbon Dioxide Emission Reduction," Sustainability, MDPI, vol. 13(4), pages 1-27, February.
    6. Niu, Qinghe & Wang, Qizhi & Wang, Wei & Chang, Jiangfang & Chen, Mingyi & Wang, Haichao & Cai, Nian & Fan, Li, 2022. "Responses of multi-scale microstructures, physical-mechanical and hydraulic characteristics of roof rocks caused by the supercritical CO2-water-rock reaction," Energy, Elsevier, vol. 238(PB).
    7. Wang, Chongyang & Zhang, Dongming & Liu, Chenxi & Pan, Yisha & Jiang, Zhigang & Yu, Beichen & Lin, Yun, 2023. "Deformation and seepage characteristics of water-saturated shale under true triaxial stress," Energy, Elsevier, vol. 284(C).
    8. Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
    9. Gintautas Mozgeris & Daiva Juknelienė, 2021. "Modeling Future Land Use Development: A Lithuanian Case," Land, MDPI, vol. 10(4), pages 1-21, April.
    10. Balcombe, Paul & Speirs, Jamie & Johnson, Erin & Martin, Jeanne & Brandon, Nigel & Hawkes, Adam, 2018. "The carbon credentials of hydrogen gas networks and supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1077-1088.
    11. Pellegrino, Sandro & Lanzini, Andrea & Leone, Pierluigi, 2017. "Greening the gas network – The need for modelling the distributed injection of alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 266-286.
    12. Abdirizak Omar & Mouadh Addassi & Volker Vahrenkamp & Hussein Hoteit, 2021. "Co-Optimization of CO 2 Storage and Enhanced Gas Recovery Using Carbonated Water and Supercritical CO 2," Energies, MDPI, vol. 14(22), pages 1-21, November.
    13. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
    14. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    15. Jin, Lu & Hawthorne, Steven & Sorensen, James & Pekot, Lawrence & Kurz, Bethany & Smith, Steven & Heebink, Loreal & Herdegen, Volker & Bosshart, Nicholas & Torres, José & Dalkhaa, Chantsalmaa & Peters, 2017. "Advancing CO2 enhanced oil recovery and storage in unconventional oil play—Experimental studies on Bakken shales," Applied Energy, Elsevier, vol. 208(C), pages 171-183.
    16. Zhang, Tianjun & Wu, Jinyu & Pang, Mingkun & Liu, Rongtao & Zhu, Shipeng & Pan, Hongyu, 2024. "Experimental study on the negative pressure loss generated by the gas influx process around a long borehole," Energy, Elsevier, vol. 296(C).
    17. José Luis Míguez & Jacobo Porteiro & Raquel Pérez-Orozco & Miguel Ángel Gómez, 2018. "Technology Evolution in Membrane-Based CCS," Energies, MDPI, vol. 11(11), pages 1-18, November.
    18. Vinca, Adriano & Rottoli, Marianna & Marangoni, Giacomo & Tavoni, Massimo, 2017. "The Role of Carbon Capture and Storage Electricity in Attaining 1.5 and 2°C," MITP: Mitigation, Innovation and Transformation Pathways 266285, Fondazione Eni Enrico Mattei (FEEM).
    19. Ganesh, Ibram, 2016. "Electrochemical conversion of carbon dioxide into renewable fuel chemicals – The role of nanomaterials and the commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1269-1297.
    20. Li, Qing & Zhang, Huaige & Hong, Xianpei, 2020. "Knowledge structure of technology licensing based on co-keywords network: A review and future directions," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 154-165.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224021844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.