IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v266y2023ics0360544222033977.html
   My bibliography  Save this article

Developing a copula-based input-output method for analyzing energy-water nexus of Tajikistan

Author

Listed:
  • Zhang, S.Q.
  • Li, Y.P.
  • Huang, G.H.
  • Ding, Y.K.
  • Yang, X.

Abstract

Energy and water are closely related and restricted, which hinder the socioeconomic sustainable development associated with resources pressure. In this study, a copula-based input-output analysis (CIOA) method is developed for analyzing energy-water nexus (EWN) through incorporating input-output analysis (IOA), ecological network analysis (ENA), and copula within a framework. The CIOA method cannot only identify key consumption sectors and system characteristics but also build a quantitative EWN dependence structure. CIOA is applied to analyzing EWN system of Tajikistan, where 45 scenarios based on different water-saving rates and joint probabilities are examined to unveil interactions of energy and water. Some major findings are: (i) household is the key final demand, in which manufacturing (MAN) is the main embodied energy consumer, and food crop planting (FCP) is the main embodied water consumer; (ii) the utilization efficiencies of energy (35.9 tce/103$) and water (0.92 m3/$) are both low; however, the circulation and stability of water system are better than those of energy system; (iii) energy-water collaborative conservation can be realized in FCP, cash crop planting (CCP) and service (SER) sectors, especially when the energy-saving rate of SER reaches about 50%. The findings suggest Tajikistan should improve the energy-water utilization efficiency and establish a cross-sectoral cooperation management pattern for supporting its economic development and resources conservation sustainbility.

Suggested Citation

  • Zhang, S.Q. & Li, Y.P. & Huang, G.H. & Ding, Y.K. & Yang, X., 2023. "Developing a copula-based input-output method for analyzing energy-water nexus of Tajikistan," Energy, Elsevier, vol. 266(C).
  • Handle: RePEc:eee:energy:v:266:y:2023:i:c:s0360544222033977
    DOI: 10.1016/j.energy.2022.126511
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222033977
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126511?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laldjebaev, Murodbek & Morreale, Stephen J. & Sovacool, Benjamin K. & Kassam, Karim-Aly S., 2018. "Rethinking energy security and services in practice: National vulnerability and three energy pathways in Tajikistan," Energy Policy, Elsevier, vol. 114(C), pages 39-50.
    2. Lee, Mengshan & Keller, Arturo A. & Chiang, Pen-Chi & Den, Walter & Wang, Hongtao & Hou, Chia-Hung & Wu, Jiang & Wang, Xin & Yan, Jinyue, 2017. "Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks," Applied Energy, Elsevier, vol. 205(C), pages 589-601.
    3. Ren, Bo & Li, Huajiao & Shi, Jianglan & Ma, Ning & Qi, Yajie, 2022. "Detecting the control and dependence relationships within the global embodied energy trade network," Energy, Elsevier, vol. 238(PB).
    4. Yu, L. & Xiao, Y. & Jiang, S. & Li, Y.P. & Fan, Y.R. & Huang, G.H. & Lv, J. & Zuo, Q.T. & Wang, F.Q., 2020. "A copula-based fuzzy interval-random programming approach for planning water-energy nexus system under uncertainty," Energy, Elsevier, vol. 196(C).
    5. Wang, Saige & Chen, Bin, 2016. "Energy–water nexus of urban agglomeration based on multiregional input–output tables and ecological network analysis: A case study of the Beijing–Tianjin–Hebei region," Applied Energy, Elsevier, vol. 178(C), pages 773-783.
    6. Feng, Kuishuang & Hubacek, Klaus & Siu, Yim Ling & Li, Xin, 2014. "The energy and water nexus in Chinese electricity production: A hybrid life cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 342-355.
    7. Wang, Saige & Fath, Brian & Chen, Bin, 2019. "Energy–water nexus under energy mix scenarios using input–output and ecological network analyses," Applied Energy, Elsevier, vol. 233, pages 827-839.
    8. Tsolas, Spyridon D. & Karim, M. Nazmul & Hasan, M.M. Faruque, 2018. "Optimization of water-energy nexus: A network representation-based graphical approach," Applied Energy, Elsevier, vol. 224(C), pages 230-250.
    9. Liu, Bin & Gao, Qun & Liang, Lingfeng & Sun, Jide & Liu, Chunlu & Xu, Youquan, 2021. "Ecological relationships of global construction industries in sustainable economic and energy development," Energy, Elsevier, vol. 234(C).
    10. Wakeel, Muhammad & Chen, Bin & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2016. "Energy consumption for water use cycles in different countries: A review," Applied Energy, Elsevier, vol. 178(C), pages 868-885.
    11. Karimov, Akmal Kh & Toshev, Rashid H. & Karshiev, Rustam & Karimov, Aziz A., 2021. "Water–energy nexus in Central Asia's lift irrigation schemes: Multi-level linkages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    12. Gjorgiev, Blaže & Sansavini, Giovanni, 2018. "Electrical power generation under policy constrained water-energy nexus," Applied Energy, Elsevier, vol. 210(C), pages 568-579.
    13. Meng, Fanxin & Wang, Dongfang & Meng, Xiaoyan & Li, Hui & Liu, Gengyuan & Yuan, Qiuling & Hu, Yuanchao & Zhang, Yi, 2022. "Mapping urban energy–water–land nexus within a multiscale economy: A case study of four megacities in China," Energy, Elsevier, vol. 239(PB).
    14. Wang, Xue-Chao & Jiang, Peng & Yang, Lan & Fan, Yee Van & Klemeš, Jiří Jaromír & Wang, Yutao, 2021. "Extended water-energy nexus contribution to environmentally-related sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    15. Liang, M.S. & Huang, G.H. & Chen, J.P. & Li, Y.P., 2022. "Development of non-deterministic energy-water-carbon nexus planning model: A case study of Shanghai, China," Energy, Elsevier, vol. 246(C).
    16. Kawabata, Mariko & Berardo, Andrea & Mattei, Paolo & de Pee, Saskia, 2020. "Food security and nutrition challenges in Tajikistan: Opportunities for a systems approach," Food Policy, Elsevier, vol. 96(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Zhongwen & Tan, Shiqi & Yao, Liming & Lv, Chengwei, 2024. "Exploring water-saving potentials of US electric power transition while thirsting for carbon neutrality," Energy, Elsevier, vol. 292(C).
    2. Zhao, Ke-Xin & Xu, Fei-Ran & Zhou, Yan & Ma, Tao, 2024. "The heterogeneous effects of non-hydro renewable energy and water resources on industrial development of the Yellow river and Yangtze river basins," Energy, Elsevier, vol. 301(C).
    3. Huang, Shanshan & Suo, Cai & Guo, Junhong & Lv, Jing & Jing, Rui & Yu, Lei & Fan, Yurui & Ding, Yanming, 2023. "Balancing the water-energy dilemma in nexus system planning with bi-level and multi-uncertainty," Energy, Elsevier, vol. 278(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    2. Wang, Saige & Chen, Bin, 2021. "Unraveling energy–water nexus paths in urban agglomeration: A case study of Beijing–Tianjin–Hebei," Applied Energy, Elsevier, vol. 304(C).
    3. Sharifzadeh, Mahdi & Hien, Raymond Khoo Teck & Shah, Nilay, 2019. "China’s roadmap to low-carbon electricity and water: Disentangling greenhouse gas (GHG) emissions from electricity-water nexus via renewable wind and solar power generation, and carbon capture and sto," Applied Energy, Elsevier, vol. 235(C), pages 31-42.
    4. Micari, M. & Cipollina, A. & Tamburini, A. & Moser, M. & Bertsch, V. & Micale, G., 2019. "Combined membrane and thermal desalination processes for the treatment of ion exchange resins spent brine," Applied Energy, Elsevier, vol. 254(C).
    5. Chen, Yu-Wu & Chen, Jhao-Fu & Lin, Chang-Hua & Hou, Chia-Hung, 2019. "Integrating a supercapacitor with capacitive deionization for direct energy recovery from the desalination of brackish water," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    6. Shen, Jijie & Yi, Peng & Zhang, Xumin & Yang, Yuantao & Fang, Jinzhu & Chi, Yuanying, 2023. "Can water conservation and energy conservation be promoted simultaneously in China?," Energy, Elsevier, vol. 278(PA).
    7. Chen, Chen & Zhang, Xiaodong & Zhang, Huayong & Cai, Yanpeng & Wang, Shuguang, 2022. "Managing water-energy-carbon nexus in integrated regional water network planning through graph theory-based bi-level programming," Applied Energy, Elsevier, vol. 328(C).
    8. Chen, Pi-Cheng & Alvarado, Valeria & Hsu, Shu-Chien, 2018. "Water energy nexus in city and hinterlands: Multi-regional physical input-output analysis for Hong Kong and South China," Applied Energy, Elsevier, vol. 225(C), pages 986-997.
    9. Zhang, Yiyi & Fang, Jiake & Wang, Saige & Yao, Huilu, 2020. "Energy-water nexus in electricity trade network: A case study of interprovincial electricity trade in China," Applied Energy, Elsevier, vol. 257(C).
    10. Hao Li & Yuhuan Zhao & Jiang Lin, 2020. "A review of the energy–carbon–water nexus: Concepts, research focuses, mechanisms, and methodologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
    11. Wang, Can & Zheng, Xinzhu & Cai, Wenjia & Gao, Xue & Berrill, Peter, 2017. "Unexpected water impacts of energy-saving measures in the iron and steel sector: Tradeoffs or synergies?," Applied Energy, Elsevier, vol. 205(C), pages 1119-1127.
    12. Pauline Macharia & Maria Wirth & Paul Yillia & Norbert Kreuzinger, 2021. "Examining the Relative Impact of Drivers on Energy Input for Municipal Water Supply in Africa," Sustainability, MDPI, vol. 13(15), pages 1-27, July.
    13. Ana Luiza Fontenelle & Erik Nilsson & Ieda Geriberto Hidalgo & Cintia B. Uvo & Drielli Peyerl, 2022. "Temporal Understanding of the Water–Energy Nexus: A Literature Review," Energies, MDPI, vol. 15(8), pages 1-21, April.
    14. Nawab, Asim & Liu, Gengyuan & Meng, Fanxin & Hao, Yan & Zhang, Yan, 2019. "Urban energy-water nexus: Spatial and inter-sectoral analysis in a multi-scale economy," Ecological Modelling, Elsevier, vol. 403(C), pages 44-56.
    15. Zhai, Mengyu & Huang, Guohe & Liu, Lirong & Zheng, Boyue & Guan, Yuru, 2020. "Inter-regional carbon flows embodied in electricity transmission: network simulation for energy-carbon nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    16. Jin, Yi & Tang, Xu & Feng, Cuiyang & Höök, Mikael, 2017. "Energy and water conservation synergy in China: 2007–2012," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 206-215.
    17. Lv, J. & Li, Y.P. & Huang, G.H. & Suo, C. & Mei, H. & Li, Y., 2020. "Quantifying the impact of water availability on China's energy system under uncertainties: A perceptive of energy-water nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    18. Ahmad, Shakeel & Jia, Haifeng & Chen, Zhengxia & Li, Qian & Xu, Changqing, 2020. "Water-energy nexus and energy efficiency: A systematic analysis of urban water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    19. Liu, Yitong & Chen, Bin & Wei, Wendong & Shao, Ling & Li, Zhi & Jiang, Weizhong & Chen, Guoqian, 2020. "Global water use associated with energy supply, demand and international trade of China," Applied Energy, Elsevier, vol. 257(C).
    20. Molinos-Senante, María & Sala-Garrido, Ramón, 2018. "Evaluation of energy performance of drinking water treatment plants: Use of energy intensity and energy efficiency metrics," Applied Energy, Elsevier, vol. 229(C), pages 1095-1102.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:266:y:2023:i:c:s0360544222033977. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.