IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v266y2023ics0360544222033163.html
   My bibliography  Save this article

Regulation strategies and thermodynamic analysis of combined cooling, heating, and power system integrated with biomass gasification and solid oxide fuel cell

Author

Listed:
  • Wang, Jiangjiang
  • Cui, Zhiheng
  • Yao, Wenqi
  • Huo, Shuojie

Abstract

A solid oxide fuel cell combined cooling, heating, and power system integrating biomass gasification is proposed. The hybrid system consists of the biomass gasifier, solid oxide fuel cell-gas turbine, and waste heat recovery device. The system can be divided into different configurations by adjusting the valve opening to change the waste heat mode. The thermodynamic model is established and validated; the system evaluation indicators and the thermodynamic, economic and environmental performance are researched under design conditions. The influences of several crucial parameters on syngas composition and system performance under the different configurations are investigated. This paper also evaluates the scope of system regulation and energy output to meet the energy demand side. The analysis results indicate that system power efficiency is 58.92% at the preferred configuration, and the system energy and exergy efficiency can attain 86.70% and 50.45%. The system total cost rate and the CO2 emission rate are relatively lower, at 19.6$/h and 0.4722kg/kWh. By implementing different configuration strategies, the system exergy efficiency is between 46.55% and 50.45%. The system heating to power ratio and cooling to power ratio can vary from 0 to 0.58 and 0 to 0.77.

Suggested Citation

  • Wang, Jiangjiang & Cui, Zhiheng & Yao, Wenqi & Huo, Shuojie, 2023. "Regulation strategies and thermodynamic analysis of combined cooling, heating, and power system integrated with biomass gasification and solid oxide fuel cell," Energy, Elsevier, vol. 266(C).
  • Handle: RePEc:eee:energy:v:266:y:2023:i:c:s0360544222033163
    DOI: 10.1016/j.energy.2022.126430
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222033163
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126430?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huda, A.S.N. & Mekhilef, S. & Ahsan, A., 2014. "Biomass energy in Bangladesh: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 504-517.
    2. Aydin, Mucahit, 2019. "The effect of biomass energy consumption on economic growth in BRICS countries: A country-specific panel data analysis," Renewable Energy, Elsevier, vol. 138(C), pages 620-627.
    3. You, Huailiang & Han, Jitian & Liu, Yang & Chen, Changnian & Ge, Yi, 2020. "4E analysis and multi-objective optimization of a micro poly-generation system based on SOFC/MGT/MED and organic steam ejector refrigerator," Energy, Elsevier, vol. 206(C).
    4. Li, Minzhi & Jiang, Xi Zhuo & Zheng, Danxing & Zeng, Guangbiao & Shi, Lin, 2016. "Thermodynamic boundaries of energy saving in conventional CCHP (Combined Cooling, Heating and Power) systems," Energy, Elsevier, vol. 94(C), pages 243-249.
    5. AlNouss, Ahmed & Parthasarathy, Prakash & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish & McKay, Gordon, 2020. "Techno-economic and sensitivity analysis of coconut coir pith-biomass gasification using ASPEN PLUS," Applied Energy, Elsevier, vol. 261(C).
    6. Somers, C. & Mortazavi, A. & Hwang, Y. & Radermacher, R. & Rodgers, P. & Al-Hashimi, S., 2011. "Modeling water/lithium bromide absorption chillers in ASPEN Plus," Applied Energy, Elsevier, vol. 88(11), pages 4197-4205.
    7. Koo, Taehyung & Kim, Young Sang & Lee, Dongkeun & Yu, Sangseok & Lee, Young Duk, 2021. "System simulation and exergetic analysis of solid oxide fuel cell power generation system with cascade configuration," Energy, Elsevier, vol. 214(C).
    8. Cho, Heejin & Smith, Amanda D. & Mago, Pedro, 2014. "Combined cooling, heating and power: A review of performance improvement and optimization," Applied Energy, Elsevier, vol. 136(C), pages 168-185.
    9. Morris, David R. & Szargut, Jan, 1986. "Standard chemical exergy of some elements and compounds on the planet earth," Energy, Elsevier, vol. 11(8), pages 733-755.
    10. Wang, Jiangjiang & Mao, Tianzhi & Sui, Jun & Jin, Hongguang, 2015. "Modeling and performance analysis of CCHP (combined cooling, heating and power) system based on co-firing of natural gas and biomass gasification gas," Energy, Elsevier, vol. 93(P1), pages 801-815.
    11. Wu, Zhen & Zhu, Pengfei & Yao, Jing & Zhang, Shengan & Ren, Jianwei & Yang, Fusheng & Zhang, Zaoxiao, 2020. "Combined biomass gasification, SOFC, IC engine, and waste heat recovery system for power and heat generation: Energy, exergy, exergoeconomic, environmental (4E) evaluations," Applied Energy, Elsevier, vol. 279(C).
    12. Rokni, Masoud, 2014. "Thermodynamic and thermoeconomic analysis of a system with biomass gasification, solid oxide fuel cell (SOFC) and Stirling engine," Energy, Elsevier, vol. 76(C), pages 19-31.
    13. Wang, Jiangjiang & Han, Zepeng & Guan, Zhimin, 2020. "Hybrid solar-assisted combined cooling, heating, and power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    14. Rokni, Masoud, 2014. "Biomass gasification integrated with a solid oxide fuel cell and Stirling engine," Energy, Elsevier, vol. 77(C), pages 6-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Haolong & Zhang, Tuo & Wei, Wei & Liu, Fengxia & Xu, Xiaofei & Li, Zhiyi & Liu, Zhijun, 2023. "Performance enhancement of multi-gas compatible dual-channel interconnector for planar solid oxide fuel cells," Energy, Elsevier, vol. 283(C).
    2. Ji, Jie & Wen, Wenchao & Xie, Yingqi & Xia, Aoyun & Wang, Wenjie & Xie, Jinbo & Yin, Qingyuan & Ma, Mengyu & Huang, Hui & Huang, Xiaolong & Zhang, Chu & Wang, Yaodong, 2024. "Optimization and uncertainty analysis of Co-combustion ratios in a semi-isolated green energy combined cooling, heating, and power system (SIGE-CCHP)," Energy, Elsevier, vol. 302(C).
    3. Yang, Sheng & Jin, Zhengpeng & Ji, Feng & Deng, Chengwei & Liu, Zhiqiang, 2023. "Proposal and analysis of a combined cooling, heating, and power system with humidity control based on solid oxide fuel cell," Energy, Elsevier, vol. 284(C).
    4. Ni, Jing-Wei & Li, Ming-Jia & Zhang, Teng & Du, Shen & Hung, Tzu-Chen, 2024. "Optimal energy management based on real-time performance analysis for the solid oxide fuel cell-combined heat and power system," Energy, Elsevier, vol. 304(C).
    5. Fu, Chao & Zhang, Wei & Li, Anxiang & Shen, Qingfei & Zhao, Ning & Cui, Zhiheng & Wang, Jiangjiang, 2024. "Exergy-water-carbon-cost nexus of a biomass-syngas-fueled fuel cell system integrated with organic Rankine cycle," Renewable Energy, Elsevier, vol. 231(C).
    6. Kong, Mengdi & Ye, Xuemin & Liu, Di & Li, Chunxi, 2024. "Comprehensive evaluation of medical waste gasification low-carbon multi-generation system based on AHP–EWM–GFCE method," Energy, Elsevier, vol. 296(C).
    7. Li, Ling-Ling & Qu, Li-Nan & Tseng, Ming-Lang & Lim, Ming K. & Ren, Xin-Yu & Miao, Yan, 2024. "Optimization and performance assessment of solar-assisted combined cooling, heating and power system systems: Multi-objective gradient-based optimizer," Energy, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Heng & Zhao, Hongbin & Du, Huicheng & Zhao, Zefeng & Zhang, Taiheng, 2022. "Thermodynamic performance study of a new diesel-fueled CLHG/SOFC/STIG cogeneration system with CO2 recovery," Energy, Elsevier, vol. 246(C).
    2. Wang, Jiangjiang & Mao, Tianzhi & Wu, Jing, 2017. "Modified exergoeconomic modeling and analysis of combined cooling heating and power system integrated with biomass-steam gasification," Energy, Elsevier, vol. 139(C), pages 871-882.
    3. Liang, Wenxing & Yu, Zeting & Bian, Feiyu & Wu, Haonan & Zhang, Kaifan & Ji, Shaobo & Cui, Bo, 2023. "Techno-economic-environmental analysis and optimization of biomass-based SOFC poly-generation system," Energy, Elsevier, vol. 285(C).
    4. Pongratz, Gernot & Subotić, Vanja & Hochenauer, Christoph & Scharler, Robert & Anca-Couce, Andrés, 2022. "Solid oxide fuel cell operation with biomass gasification product gases: Performance- and carbon deposition risk evaluation via a CFD modelling approach," Energy, Elsevier, vol. 244(PB).
    5. Han, Zepeng & Wang, Jiangjiang & Cui, Zhiheng & Lu, Chunyan & Qi, Xiaoling, 2021. "Multi-objective optimization and exergoeconomic analysis for a novel full-spectrum solar-assisted methanol combined cooling, heating, and power system," Energy, Elsevier, vol. 237(C).
    6. Yuan, Yu & Bai, Zhang & Liu, Qibin & Hu, Wenxin & Zheng, Bo, 2021. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Route of enhancing the operation flexibility," Applied Energy, Elsevier, vol. 301(C).
    7. Zhao, Hongbin & Jiang, Ting & Hou, Hucan, 2015. "Performance analysis of the SOFC–CCHP system based on H2O/Li–Br absorption refrigeration cycle fueled by coke oven gas," Energy, Elsevier, vol. 91(C), pages 983-993.
    8. Tera, Ibrahim & Zhang, Shengan & Liu, Guilian, 2024. "A conceptual hydrogen, heat and power polygeneration system based on biomass gasification, SOFC and waste heat recovery units: Energy, exergy, economic and emergy (4E) assessment," Energy, Elsevier, vol. 295(C).
    9. Xing, Lei & Du, Shangfeng & Chen, Rui & Mamlouk, Mohamed & Scott, Keith, 2016. "Anode partial flooding modelling of proton exchange membrane fuel cells: Model development and validation," Energy, Elsevier, vol. 96(C), pages 80-95.
    10. Vaclav Novotny & David J. Szucs & Jan Špale & Hung-Yin Tsai & Michal Kolovratnik, 2021. "Absorption Power and Cooling Combined Cycle with an Aqueous Salt Solution as a Working Fluid and a Technically Feasible Configuration," Energies, MDPI, vol. 14(12), pages 1-26, June.
    11. Mei, Shuxue & Lu, Xiaorui & Zhu, Yu & Wang, Shixue, 2021. "Thermodynamic assessment of a system configuration strategy for a cogeneration system combining SOFC, thermoelectric generator, and absorption heat pump," Applied Energy, Elsevier, vol. 302(C).
    12. Xu, Haoran & Chen, Bin & Tan, Peng & Zhang, Houcheng & Yuan, Jinliang & Liu, Jiang & Ni, Meng, 2017. "Performance improvement of a direct carbon solid oxide fuel cell system by combining with a Stirling cycle," Energy, Elsevier, vol. 140(P1), pages 979-987.
    13. Bataineh, Khaled, 2024. "Hybrid fuel-assisted solar-powered stirling engine for combined cooling, heating, and power systems: A review," Energy, Elsevier, vol. 300(C).
    14. Wang, Xiaomeng & Duan, Liqiang & Zheng, Nan, 2024. "Thermodynamic and economic analysis of a new CCHP system with active solar energy storage and decoupling of power and cooling outputs," Energy, Elsevier, vol. 307(C).
    15. Lu, Shuai & Gu, Wei & Zhou, Jinhui & Zhang, Xuesong & Wu, Chenyu, 2018. "Coordinated dispatch of multi-energy system with district heating network: Modeling and solution strategy," Energy, Elsevier, vol. 152(C), pages 358-370.
    16. Ma, Zherui & Dong, Fuxiang & Wang, Jiangjiang & Zhou, Yuan & Feng, Yingsong, 2023. "Optimal design of a novel hybrid renewable energy CCHP system considering long and short-term benefits," Renewable Energy, Elsevier, vol. 206(C), pages 72-85.
    17. Yang, Hang-Suin & Zhu, Hao-Qiang & Xiao, Xian-Zhong, 2023. "Comparison of the dynamic characteristics and performance of beta-type Stirling engines operating with different driving mechanisms," Energy, Elsevier, vol. 275(C).
    18. Zhang, Jifu & Cui, Peizhe & Yang, Sheng & Zhou, Yaru & Du, Wei & Wang, Yinglong & Deng, Chengwei & Wang, Shuai, 2023. "Thermodynamic analysis of SOFC–CCHP system based on municipal sludge plasma gasification with carbon capture," Applied Energy, Elsevier, vol. 336(C).
    19. Majidniya, Mahdi & Remy, Benjamin & Boileau, Thierry & Zandi, Majid, 2021. "Free Piston Stirling Engine as a new heat recovery option for an Internal Reforming Solid Oxide Fuel Cell," Renewable Energy, Elsevier, vol. 171(C), pages 1188-1201.
    20. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Thermoeconomic and environmental assessments of a combined cycle for the small scale LNG cold utilization," Applied Energy, Elsevier, vol. 204(C), pages 1148-1162.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:266:y:2023:i:c:s0360544222033163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.