IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v275y2023ics036054422300782x.html
   My bibliography  Save this article

Prediction of energy mass loss rate for biodiesel fire via machine learning and its physical modeling of flame radiation evolution

Author

Listed:
  • Deng, Lei
  • Shi, Congling
  • Li, Haoran
  • Wan, Mei
  • Ren, Fei
  • Hou, Yanan
  • Tang, Fei

Abstract

Biodiesel is an emblematic energy of green power and developing vigorously, which is conducive to an important strategic significance covering the sustainable development of the global economy, the promotion of energy substitution, the reduction of environmental pressure, and the control of atmospheric contamination. In order to study the biodiesel energy burning characteristics, a series of experiments were carried out in an ISO9705 full-scale room, and the effects of pool size on the burning rate, flame height, flame oscillation frequency, and flame radiation fraction of biodiesel energy fire were systematically analyzed. This study uses genetic algorithm-back propagation neural network (GA-BPNN) algorithms for real-time prediction of transient fire mass loss rates. Three parameters (pool size, liquid depth, and burning time) are paired with the fuel mass loss rate and trained using a GA-BPNN algorithms model. The results show that the GA-BPNN algorithms predictions have a good correlation with the validated experimental values and the relative is less than 15%. Furthermore, the ratio of intermittent flame height and continuous flame height to their mean value is calculated respectively at about 1.72 and 0.58. The flame oscillation frequency decreases following the increase in oil pool size, the correlation can be calculated by f=0.3(D/g′)1/2. Finally, a new correlation χrad=0.2Q˙*−2/3 is proposed to predict the flame radiation fraction by increasing the flame viewing factor coefficient. The proposed correlation can be used to describe its evolution under different oil pool sizes, which can be essential to estimate the flame radiation impact on surroundings for such biodiesel energy fires.

Suggested Citation

  • Deng, Lei & Shi, Congling & Li, Haoran & Wan, Mei & Ren, Fei & Hou, Yanan & Tang, Fei, 2023. "Prediction of energy mass loss rate for biodiesel fire via machine learning and its physical modeling of flame radiation evolution," Energy, Elsevier, vol. 275(C).
  • Handle: RePEc:eee:energy:v:275:y:2023:i:c:s036054422300782x
    DOI: 10.1016/j.energy.2023.127388
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422300782X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127388?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jung, Sungyup & Jung, Jong-Min & Tsang, Yiu Fai & Bhatnagar, Amit & Chen, Wei-Hsin & Lin, Kun-Yi Andrew & Kwon, Eilhann E., 2022. "Biodiesel production from black soldier fly larvae derived from food waste by non-catalytic transesterification," Energy, Elsevier, vol. 238(PA).
    2. Li, Cong & Xu, Zixuan & Wang, Yuqing & Xu, Wenbo & Yang, Rui & Zhang, Hui, 2023. "Investigation of heat and mass transfer characteristics during the flame propagation of biomass straw from an initial linear fire source," Energy, Elsevier, vol. 265(C).
    3. Khanali, Majid & Ghasemi-Mobtaker, Hassan & Varmazyar, Hossein & Mohammadkashi, Naghmeh & Chau, Kwok-wing & Nabavi-Pelesaraei, Ashkan, 2022. "Applying novel eco-exergoenvironmental toxicity index to select the best irrigation system of sunflower production," Energy, Elsevier, vol. 250(C).
    4. Balli, Ozgur & Caliskan, Nesrin & Caliskan, Hakan, 2023. "Aviation, energy, exergy, sustainability, exergoenvironmental and thermoeconomic analyses of a turbojet engine fueled with jet fuel and biofuel used on a pilot trainer aircraft," Energy, Elsevier, vol. 263(PD).
    5. Ng, Wei Zhe & Obon, Aaron Anthony & Lee, Chin Loong & Ong, Yi Hui & Gourich, Wail & Maran, Kireshwen & Tang, Dennis Boon Yong & Song, Cher Pin & Chan, Eng-Seng, 2022. "Techno-economic analysis of enzymatic biodiesel co-produced in palm oil mills from sludge palm oil for improving renewable energy access in rural areas," Energy, Elsevier, vol. 243(C).
    6. Yatish, K.V. & Omkaresh, B.R. & Kattimani, Veeranna R. & Lalithamba, H.S. & Sakar, M. & Balakrishna, R. Geetha, 2023. "Solar energy-assisted reactor for the sustainable biodiesel production from Butea monosperma oil: Optimization, kinetic, thermodynamic and assessment studies," Energy, Elsevier, vol. 263(PB).
    7. Ding, Long & Gong, Changzhi & Ge, Fanliang & Ji, Jie, 2021. "Experimental study on flame radiation characteristic from line pool fires of n-heptane fuel in open space," Energy, Elsevier, vol. 218(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ge, Shaokun & Zhou, Fubao & Ni, Ya & Guo, Fengqi & Shen, Wangzhaonan & Li, Jia & Shi, Bobo, 2024. "Experimental study and new-proposed characterization of burning rate and flame geometry of gasoline pool fires with different aspect ratios," Energy, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Sai & Xu, JingBo & Wang, Chen & Ji, Jie, 2023. "Experimental study of flame spread behavior and heat transfer mechanism over n-butanol fuel in trays of different widths," Energy, Elsevier, vol. 282(C).
    2. Jakub Żywiec & Dawid Szpak & Izabela Piegdoń & Krzysztof Boryczko & Katarzyna Pietrucha-Urbanik & Barbara Tchórzewska-Cieślak & Janusz Rak, 2023. "An Approach to Assess the Water Resources Reliability and Its Management," Resources, MDPI, vol. 12(1), pages 1-14, January.
    3. Wang, Dandan & Li, Yusheng & Yang, Yongge & Hayase, Shuzi & Wu, Haifeng & Wang, Ruixiang & Ding, Chao & Shen, Qing, 2023. "How to minimize voltage and fill factor losses to achieve over 20% efficiency lead chalcogenide quantum dot solar cells: Strategies expected through numerical simulation," Applied Energy, Elsevier, vol. 341(C).
    4. Li, Manhou & Xu, Zhiguo & Luo, Qiuting & Wang, Changjian, 2023. "Investigation of bicubic flame radiation model of continuously opposed spilling fire over n-butanol fuel," Energy, Elsevier, vol. 272(C).
    5. Montalvo-Navarrete, Juan M. & Lasso-Palacios, Ana P., 2024. "Energy access sustainability criteria definition for Colombian rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    6. Chen, Jian & Song, Ye & Yu, Yueyang & Xiao, Guoqing & Tam, Wai Cheong & Kong, Depeng, 2022. "The influence of a plate obstacle on the burning behavior of small scale pool fires: An experimental study," Energy, Elsevier, vol. 254(PB).
    7. Deng, Yawen & Ng Tsan Sheng, Adam & Xu, Jiuping, 2023. "Authority-enterprise equilibrium based mixed subsidy mechanism for the value-added treatment of food waste," Energy, Elsevier, vol. 282(C).
    8. Balli, Ozgur, 2023. "Exergetic, sustainability and environmental assessments of a turboshaft engine used on helicopter," Energy, Elsevier, vol. 276(C).
    9. Ershov, Mikhail A. & Savelenko, Vsevolod D. & Burov, Nikita O. & Makhova, Uliana A. & Mukhina, Daria Y. & Aleksanyan, David R. & Kapustin, Vladimir M. & Lobashova, Marina M. & Sereda, Alexander V. & A, 2023. "An incorporating innovation and new interactive technology into obtaining sustainable aviation fuels," Energy, Elsevier, vol. 280(C).
    10. Kirmizi, Mehmet & Aygun, Hakan & Turan, Onder, 2024. "Energetic and exergetic metrics of a cargo aircraft turboprop propulsion system by using regression method for dynamic flight," Energy, Elsevier, vol. 296(C).
    11. Florentios Economou & Irene Voukkali & Iliana Papamichael & Valentina Phinikettou & Pantelitsa Loizia & Vincenzo Naddeo & Paolo Sospiro & Marco Ciro Liscio & Christos Zoumides & Diana Mihaela Țîrcă & , 2024. "Turning Food Loss and Food Waste into Watts: A Review of Food Waste as an Energy Source," Energies, MDPI, vol. 17(13), pages 1-32, June.
    12. Korba, Peter & Balli, Ozgur & Caliskan, Hakan & Al-Rabeei, Samer & Kale, Utku, 2023. "Energy, exergy, economic, environmental, and sustainability assessments of the CFM56-3 series turbofan engine used in the aviation sector," Energy, Elsevier, vol. 269(C).
    13. Luo, Qiaodan & Zhao, Shengfeng & Zhou, Shiji & Yao, Lipan & Yang, Chengwu & Lu, Xingen & Zhu, Junqiang, 2024. "Influence of diversified dihedral stator on the thermodynamic performance and flow loss characteristics of a variable core driven fan stage," Energy, Elsevier, vol. 294(C).
    14. Abdalla, Muftah S.M. & Balli, Ozgur & Adali, Osama H. & Korba, Peter & Kale, Utku, 2023. "Thermodynamic, sustainability, environmental and damage cost analyses of jet fuel starter gas turbine engine," Energy, Elsevier, vol. 267(C).
    15. Shixiong Xu & Sara Shirowzhan & Samad M. E. Sepasgozar, 2023. "Urban Waste Management and Prediction through Socio-Economic Values and Visualizing the Spatiotemporal Relationship on an Advanced GIS-Based Dashboard," Sustainability, MDPI, vol. 15(16), pages 1-38, August.
    16. Zhao, Qiaonan & Liu, Feng & Jiao, Anyao & Yang, Qiguo & Xu, Hongtao & Liao, Xiaowei, 2023. "Prediction model of NOx emissions in the heavy-duty gas turbine combustor based on MILD combustion," Energy, Elsevier, vol. 282(C).
    17. Zhu, Hongmei & He, Donglin & Duan, Hao & Yin, Hong & Chen, Yafei & Chao, Xing & Zhang, Xianming & Gong, Haifeng, 2023. "Study on coupled combustion behaviors and kinetics of plastic pyrolysis by-product for oil," Energy, Elsevier, vol. 262(PA).
    18. Du, Haixia & Shao, Zongping, 2022. "Synergistic effects between solid potato waste and waste activated sludge for waste-to-power conversion in microbial fuel cells," Applied Energy, Elsevier, vol. 314(C).
    19. Kagan Ayaz, S. & Caliskan, Hakan & Altuntas, Onder, 2023. "Environmental and second law analysis of a turbojet engine operating with different fuels," Energy, Elsevier, vol. 285(C).
    20. Hakan Caliskan & Ibrahim Yildiz & Kazutoshi Mori, 2022. "Production and Assessment of New Biofuels from Waste Cooking Oils as Sustainable Bioenergy Sources," Energies, MDPI, vol. 16(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:275:y:2023:i:c:s036054422300782x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.