IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v264y2023ics0360544222030341.html
   My bibliography  Save this article

An open-cathode PEMFC efficiency optimization strategy based on exergy analysis and data-driven modeling

Author

Listed:
  • Deng, Bo
  • Huang, Wentao
  • Jian, Qifei

Abstract

In open-cathode proton exchange membrane fuel cell (PEMFC) stacks, the fan is responsible for the air supply on the cathode side of the PEMFC and the heat dissipation of the stack, which is the main source of parasitic power in the stack system and affects the energy utilization efficiency of the stack. Previous studies on the efficiency of open-cathode PEMFCs have rarely considered that the energy itself is also qualitatively different, and the efficiency calculated based on exergy analysis can better reflect the energy utilization of the stack. In this paper, an exergy analysis-based and data-driven PEMFC model is developed and an optimization strategy to solve the constrained planning problem is designed to obtain the optimal exergy efficiency and fan power values at different temperatures. The optimization results show that the maximum improvement of exergy efficiency is 15.40%, 22.65%, and 27.62% for three different load currents, respectively. The proposed combined optimization strategy is expected to provide insight into the control and optimization of PEMFC systems.

Suggested Citation

  • Deng, Bo & Huang, Wentao & Jian, Qifei, 2023. "An open-cathode PEMFC efficiency optimization strategy based on exergy analysis and data-driven modeling," Energy, Elsevier, vol. 264(C).
  • Handle: RePEc:eee:energy:v:264:y:2023:i:c:s0360544222030341
    DOI: 10.1016/j.energy.2022.126148
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222030341
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kandidayeni, M. & Macias, A. & Boulon, L. & Kelouwani, S., 2020. "Investigating the impact of ageing and thermal management of a fuel cell system on energy management strategies," Applied Energy, Elsevier, vol. 274(C).
    2. Sun, Li & Li, Guanru & Hua, Q.S. & Jin, Yuhui, 2020. "A hybrid paradigm combining model-based and data-driven methods for fuel cell stack cooling control," Renewable Energy, Elsevier, vol. 147(P1), pages 1642-1652.
    3. Wu, Zhen & Tan, Peng & Chen, Bin & Cai, Weizi & Chen, Meina & Xu, Xiaoming & Zhang, Zaoxiao & Ni, Meng, 2019. "Dynamic modeling and operation strategy of an NG-fueled SOFC-WGS-TSA-PEMFC hybrid energy conversion system for fuel cell vehicle by using MATLAB/SIMULINK," Energy, Elsevier, vol. 175(C), pages 567-579.
    4. Fernández-Moreno, J. & Guelbenzu, G. & Martín, A.J. & Folgado, M.A. & Ferreira-Aparicio, P. & Chaparro, A.M., 2013. "A portable system powered with hydrogen and one single air-breathing PEM fuel cell," Applied Energy, Elsevier, vol. 109(C), pages 60-66.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Xianxian & Cai, Shanshan & Luo, Xiaobing & Tu, Zhengkai, 2024. "Barrel effect in an air-cooled proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 286(C).
    2. Sun, Yun & Lin, Yixiong & Wang, Qinglian & Yang, Chen & Yin, Wang & Wan, Zhongmin & Qiu, Ting, 2024. "Novel design and numerical investigation of a windward bend flow field for proton exchange membrane fuel cell," Energy, Elsevier, vol. 290(C).
    3. Chen, Zhijie & Zuo, Wei & Zhou, Kun & Li, Qingqing & Huang, Yuhan & E, Jiaqiang, 2023. "Multi-factor impact mechanism on the performance of high temperature proton exchange membrane fuel cell," Energy, Elsevier, vol. 278(PB).
    4. Lei, Gang & Zheng, Hualin & Zhang, Jun & Siong Chin, Cheng & Xu, Xinhai & Zhou, Weijiang & Zhang, Caizhi, 2023. "Analyzing characteristic and modeling of high-temperature proton exchange membrane fuel cells with CO poisoning effect," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenshang Chen & Yang Liu & Ben Chen, 2022. "Numerical Simulation on Pressure Dynamic Response Characteristics of Hydrogen Systems for Fuel Cell Vehicles," Energies, MDPI, vol. 15(7), pages 1-18, March.
    2. Sun, Li & Li, Guanru & You, Fengqi, 2020. "Combined internal resistance and state-of-charge estimation of lithium-ion battery based on extended state observer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    3. Won, Jinyeon & Oh, Hwanyeong & Hong, Jongsup & Kim, Minjin & Lee, Won-Yong & Choi, Yoon-Young & Han, Soo-Bin, 2021. "Hybrid diagnosis method for initial faults of air supply systems in proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 180(C), pages 343-352.
    4. Deng, Zhihua & Chen, Qihong & Zhang, Liyan & Zhou, Keliang & Zong, Yi & Fu, Zhichao & Liu, Hao, 2021. "Data-driven reconstruction of interpretable model for air supply system of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 299(C).
    5. Dapeng Gong & Sichuan Xu & Yuan Gao, 2023. "Investigation of Water and Heat Transfer Mechanism in PEMFCs Based on a Two-Phase Non-Isothermal Model," Energies, MDPI, vol. 16(2), pages 1-20, January.
    6. Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
    7. Lopez-Juarez, M. & Rockstroh, T. & Novella, R. & Vijayagopal, R., 2024. "A methodology to develop multi-physics dynamic fuel cell system models validated with vehicle realistic drive cycle data," Applied Energy, Elsevier, vol. 358(C).
    8. Ma, Shuai & Lin, Meng & Lin, Tzu-En & Lan, Tian & Liao, Xun & Maréchal, François & Van herle, Jan & Yang, Yongping & Dong, Changqing & Wang, Ligang, 2021. "Fuel cell-battery hybrid systems for mobility and off-grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Jouin, Marine & Bressel, Mathieu & Morando, Simon & Gouriveau, Rafael & Hissel, Daniel & Péra, Marie-Cécile & Zerhouni, Noureddine & Jemei, Samir & Hilairet, Mickael & Ould Bouamama, Belkacem, 2016. "Estimating the end-of-life of PEM fuel cells: Guidelines and metrics," Applied Energy, Elsevier, vol. 177(C), pages 87-97.
    10. Lü, Xueqin & Meng, Ruidong & Deng, Ruiyu & Long, Liyuan & Wu, Yinbo, 2022. "Energy economy optimization and comprehensive performance improvement for PEMFC/LIB hybrid system based on hierarchical optimization," Renewable Energy, Elsevier, vol. 193(C), pages 1132-1149.
    11. Zhang, Xiaofeng & Liu, Wenjing & Pan, Jinjun & Zhao, Bin & Yi, Zhengyuan & He, Xu & Liu, Yuting & Li, Hongqiang, 2024. "Comprehensive performance assessment of a novel biomass-based CCHP system integrated with SOFC and HT-PEMFC," Energy, Elsevier, vol. 295(C).
    12. Chen, Shuang & Hu, Minghui & Guo, Shanqi, 2023. "Fast dynamic-programming algorithm for solving global optimization problems of hybrid electric vehicles," Energy, Elsevier, vol. 273(C).
    13. Daeichian, Abolghasem & Ghaderi, Razieh & Kandidayeni, Mohsen & Soleymani, Mehdi & Trovão, João P. & Boulon, Loïc, 2021. "Online characteristics estimation of a fuel cell stack through covariance intersection data fusion," Applied Energy, Elsevier, vol. 292(C).
    14. Song, Zhen & Pan, Yue & Chen, Huicui & Zhang, Tong, 2021. "Effects of temperature on the performance of fuel cell hybrid electric vehicles: A review," Applied Energy, Elsevier, vol. 302(C).
    15. Rahimi, Mohammad & Abbaspour-Fard, Mohammad Hossein & Rohani, Abbas, 2021. "A multi-data-driven procedure towards a comprehensive understanding of the activated carbon electrodes performance (using for supercapacitor) employing ANN technique," Renewable Energy, Elsevier, vol. 180(C), pages 980-992.
    16. Peng, Hujun & Chen, Zhu & Li, Jianxiang & Deng, Kai & Dirkes, Steffen & Gottschalk, Jonas & Ünlübayir, Cem & Thul, Andreas & Löwenstein, Lars & Pischinger, Stefan & Hameyer, Kay, 2021. "Offline optimal energy management strategies considering high dynamics in batteries and constraints on fuel cell system power rate: From analytical derivation to validation on test bench," Applied Energy, Elsevier, vol. 282(PA).
    17. Yang, Sheng & Jin, Zhengpeng & Ji, Feng & Deng, Chengwei & Liu, Zhiqiang, 2023. "Proposal and analysis of a combined cooling, heating, and power system with humidity control based on solid oxide fuel cell," Energy, Elsevier, vol. 284(C).
    18. Wu, Qixing & Li, Haiyang & Yuan, Wenxiang & Luo, Zhongkuan & Wang, Fang & Sun, Hongyuan & Zhao, Xuxin & Fu, Huide, 2015. "Performance evaluation of an air-breathing high-temperature proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 160(C), pages 146-152.
    19. Qianchao Wang & Hongcan Xu & Lei Pan & Li Sun, 2020. "Active Disturbance Rejection Control of Boiler Forced Draft System: A Data-Driven Practice," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    20. Iqbal, Mehroze & Becherif, Mohamed & Ramadan, Haitham S. & Badji, Abderrezak, 2021. "Dual-layer approach for systematic sizing and online energy management of fuel cell hybrid vehicles," Applied Energy, Elsevier, vol. 300(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:264:y:2023:i:c:s0360544222030341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.