IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipes0360544222028201.html
   My bibliography  Save this article

Operation strategy of a multi-mode Organic Rankine cycle system for waste heat recovery from engine cooling water

Author

Listed:
  • Zhang, Xuanang
  • Wang, Xuan
  • Cai, Jinwen
  • Wang, Rui
  • Bian, Xingyan
  • He, Zhaoxian
  • Tian, Hua
  • Shu, Gequn

Abstract

Engine cooling water contains a large amount of waste heat. Waste heat recovery (WHR) is a necessary way to improve the efficiency of engine. But too high or too low cooling water temperatures affect engine emissions and performance. To combine efficient WHR and rational use of waste heat from engine cooling water under variable engine operating conditions, this study proposed a parallel dual expander organic Rankine cycle (ORC) system that can operate in multiple modes. To exploit its advantages, the system characteristics were explored and a system operation strategy was developed through experimental studies. The regulations of the system operation were summarised through extensive experiments exploring system performance. Four system operation modes were developed based on these regulations. The four modes are applied to different heat sources to meet heat exchange requirements while operating efficiently. Finally, the feasibility of this operating strategy was verified by experiments under 16 sets different heat sources. Results show that the ORC-WHR system and operating strategy can effectively adapt to the heat source variation. The parallel operation of the dual expanders can broaden the applicable heat source conditions by 120%. This study provides the basis for the practical application of this system.

Suggested Citation

  • Zhang, Xuanang & Wang, Xuan & Cai, Jinwen & Wang, Rui & Bian, Xingyan & He, Zhaoxian & Tian, Hua & Shu, Gequn, 2023. "Operation strategy of a multi-mode Organic Rankine cycle system for waste heat recovery from engine cooling water," Energy, Elsevier, vol. 263(PE).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222028201
    DOI: 10.1016/j.energy.2022.125934
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222028201
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125934?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xuanang & Wang, Xuan & Cai, Jinwen & He, Zhaoxian & Tian, Hua & Shu, Gequn & Shi, Lingfeng, 2022. "Experimental study on operating parameters matching characteristic of the organic Rankine cycle for engine waste heat recovery," Energy, Elsevier, vol. 244(PA).
    2. Mazzi, N. & Rech, S. & Lazzaretto, A., 2015. "Off-design dynamic model of a real Organic Rankine Cycle system fuelled by exhaust gases from industrial processes," Energy, Elsevier, vol. 90(P1), pages 537-551.
    3. Yun, Eunkoo & Kim, Dokyun & Lee, Minseog & Baek, Seungdong & Yoon, Sang Youl & Kim, Kyung Chun, 2016. "Parallel-expander Organic Rankine cycle using dual expanders with different capacities," Energy, Elsevier, vol. 113(C), pages 204-214.
    4. Wang, Xuan & Wang, Rui & Jin, Ming & Shu, Gequn & Tian, Hua & Pan, Jiaying, 2020. "Control of superheat of organic Rankine cycle under transient heat source based on deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    5. Yun, Eunkoo & Kim, Dokyun & Yoon, Sang Youl & Kim, Kyung Chun, 2015. "Experimental investigation of an organic Rankine cycle with multiple expanders used in parallel," Applied Energy, Elsevier, vol. 145(C), pages 246-254.
    6. Li, Ligeng & Tian, Hua & Shi, Lingfeng & Wang, Jingyu & Li, Min & Shu, Gequn, 2021. "Adaptive flow assignment for CO2 transcritical power cycle (CTPC): An engine operational profile-based off-design study," Energy, Elsevier, vol. 225(C).
    7. Gequn Shu & Chen Hu & Hua Tian & Xiaoya Li & Zhigang Yu & Mingtao Wang, 2019. "Analysis and Optimization of Coupled Thermal Management Systems Used in Vehicles," Energies, MDPI, vol. 12(7), pages 1-17, April.
    8. Pang, Kuo-Cheng & Chen, Shih-Chi & Hung, Tzu-Chen & Feng, Yong-Qiang & Yang, Shih-Cheng & Wong, Kin-Wah & Lin, Jaw-Ren, 2017. "Experimental study on organic Rankine cycle utilizing R245fa, R123 and their mixtures to investigate the maximum power generation from low-grade heat," Energy, Elsevier, vol. 133(C), pages 636-651.
    9. Shabashevich, A. & Richards, N. & Hwang, J. & Erickson, P.A., 2015. "Analysis of powertrain design on effective waste heat recovery from conventional and hybrid electric vehicles," Applied Energy, Elsevier, vol. 157(C), pages 754-761.
    10. Naderi, Alireza & Qasemian, Ali & Shojaeefard, Mohammad Hasan & Samiezadeh, Saman & Younesi, Mostafa & Sohani, Ali & Hoseinzadeh, Siamak, 2021. "A smart load-speed sensitive cooling map to have a high- performance thermal management system in an internal combustion engine," Energy, Elsevier, vol. 229(C).
    11. Wang, Jiangfeng & Yan, Zhequan & Wang, Man & Ma, Shaolin & Dai, Yiping, 2013. "Thermodynamic analysis and optimization of an (organic Rankine cycle) ORC using low grade heat source," Energy, Elsevier, vol. 49(C), pages 356-365.
    12. Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yong & Yang, Zhao & Chen, Yubo & He, Hongxia, 2024. "A new method for predicting minimum ignition energy of environmentally friendly working fluids based on microscopic molecular structure," Energy, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Bowen & Zhang, Zhifu & Cai, Jinwen & Wang, Wei & Ju, Xueming & Xu, Yao & Lu, Xun & Tian, Hua & Shi, Lingfeng & Shu, Gequn, 2023. "Integrating engine thermal management into waste heat recovery under steady-state design and dynamic off-design conditions," Energy, Elsevier, vol. 272(C).
    2. Zhang, Xuanang & Wang, Xuan & Cai, Jinwen & He, Zhaoxian & Tian, Hua & Shu, Gequn & Shi, Lingfeng, 2022. "Experimental study on operating parameters matching characteristic of the organic Rankine cycle for engine waste heat recovery," Energy, Elsevier, vol. 244(PA).
    3. He, Chao & Liu, Chao & Zhou, Mengtong & Xie, Hui & Xu, Xiaoxiao & Wu, Shuangying & Li, Yourong, 2014. "A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources," Energy, Elsevier, vol. 68(C), pages 283-291.
    4. Li, Tailu & Qiao, Yuwen & Wang, Zeyu & Zhang, Yao & Gao, Xiang & Yuan, Ye, 2024. "Experimental study on dynamic power generation of three ORC-based cycle configurations under different heat source/sink conditions," Renewable Energy, Elsevier, vol. 227(C).
    5. Cavazzini, G. & Bari, S. & Pavesi, G. & Ardizzon, G., 2017. "A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles," Energy, Elsevier, vol. 129(C), pages 42-58.
    6. Patrick Linke & Athanasios I. Papadopoulos & Panos Seferlis, 2015. "Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review," Energies, MDPI, vol. 8(6), pages 1-47, May.
    7. Wang, Zhiqi & Zhao, Yabin & Xia, Xiaoxia & Pan, Huihui & Zhang, Sifeng & Liu, Zhipeng, 2023. "Experimental evaluation of organic Rankine cycle using zeotropic mixture under different operation conditions," Energy, Elsevier, vol. 264(C).
    8. Li, Jing & Alvi, Jahan Zeb & Pei, Gang & Su, Yuehong & Li, Pengcheng & Gao, Guangtao & Ji, Jie, 2016. "Modelling of organic Rankine cycle efficiency with respect to the equivalent hot side temperature," Energy, Elsevier, vol. 115(P1), pages 668-683.
    9. Sorn, Kimsan & Deethayat, Thoranis & Asanakham, Attakorn & Vorayos, Nat & Kiatsiriroat, Tanongkiat, 2020. "Subcooling effect in steam heat source on irreversibility reduction during supplying heat to an organic Rankine cycle having a solar-assisted biomass boiler," Energy, Elsevier, vol. 194(C).
    10. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "A hybrid system using a regenerative electrochemical cycle to harvest waste heat from the proton exchange membrane fuel cell," Energy, Elsevier, vol. 93(P2), pages 2079-2086.
    11. Steven Lecompte & Sanne Lemmens & Henk Huisseune & Martijn Van den Broek & Michel De Paepe, 2015. "Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery," Energies, MDPI, vol. 8(4), pages 1-28, April.
    12. Wu, Dan & Aye, Lu & Ngo, Tuan & Mendis, Priyan, 2017. "Optimisation and financial analysis of an organic Rankine cycle cooling system driven by facade integrated solar collectors," Applied Energy, Elsevier, vol. 185(P1), pages 172-182.
    13. Cao, Shuang & Xu, Jinliang & Miao, Zheng & Liu, Xiulong & Zhang, Ming & Xie, Xuewang & Li, Zhi & Zhao, Xiaoli & Tang, Guihua, 2019. "Steady and transient operation of an organic Rankine cycle power system," Renewable Energy, Elsevier, vol. 133(C), pages 284-294.
    14. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    15. Long, R. & Bao, Y.J. & Huang, X.M. & Liu, W., 2014. "Exergy analysis and working fluid selection of organic Rankine cycle for low grade waste heat recovery," Energy, Elsevier, vol. 73(C), pages 475-483.
    16. Fu, Ben-Ran & Hsu, Sung-Wei & Liu, Chih-Hsi & Liu, Yu-Ching, 2014. "Statistical analysis of patent data relating to the organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 986-994.
    17. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "Multi-objective optimization of a continuous thermally regenerative electrochemical cycle for waste heat recovery," Energy, Elsevier, vol. 93(P1), pages 1022-1029.
    18. Li, Jing & Gao, Guangtao & Li, Pengcheng & Pei, Gang & Huang, Hulin & Su, Yuehong & Ji, Jie, 2018. "Experimental study of organic Rankine cycle in the presence of non-condensable gases," Energy, Elsevier, vol. 142(C), pages 739-753.
    19. Rech, Sergio & Zandarin, Simone & Lazzaretto, Andrea & Frangopoulos, Christos A., 2017. "Design and off-design models of single and two-stage ORC systems on board a LNG carrier for the search of the optimal performance and control strategy," Applied Energy, Elsevier, vol. 204(C), pages 221-241.
    20. Imran, Muhammad & Usman, Muhammad & Park, Byung-Sik & Lee, Dong-Hyun, 2016. "Volumetric expanders for low grade heat and waste heat recovery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1090-1109.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222028201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.