IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipds0360544222029292.html
   My bibliography  Save this article

Hybrid solar PV-wind-battery system bidding optimisation: A case study for the Iberian and Italian liberalised electricity markets

Author

Listed:
  • Graça Gomes, João
  • Jiang, Juan
  • Chong, Cheng Tung
  • Telhada, João
  • Zhang, Xu
  • Sammarchi, Sergio
  • Wang, Shuyang
  • Lin, Yu
  • Li, Jialong

Abstract

The coupling of electrical batteries with variable renewable power generation can increase the production flexibility and revenue of power plant operators. This study focuses on developing an optimisation model to manage the operational revenue of a renewable power unit comprising a wind farm, solar photovoltaic (PV) power plant, and electrical battery. The power system integration was conducted by formulating a mixed-integer linear programme to schedule the day-ahead operation of the renewable power unit in two liberalised power markets: the Italian and Iberian day-ahead power markets. Several scenarios and case studies have been analysed to assess the value of storage for revenue maximisation. The proposed methodology results reveal that the average yearly net revenue of the hybrid PV-wind-storage power plant can increase by 4% compared to the standalone operation of the wind and solar PV power plants. Additionally, the results indicate that in the markets analysed the coupling of storage to wind power generates a higher revenue than coupling storage systems with solar power. The study demonstrated a correlation between the increase in revenue and the capacity installed in the battery and concluded that the use of hybrid VRE storage systems would be feasible in the Iberian Peninsula and Italy for battery installation costs ranging from €14,804/MW to €38,267/MW.

Suggested Citation

  • Graça Gomes, João & Jiang, Juan & Chong, Cheng Tung & Telhada, João & Zhang, Xu & Sammarchi, Sergio & Wang, Shuyang & Lin, Yu & Li, Jialong, 2023. "Hybrid solar PV-wind-battery system bidding optimisation: A case study for the Iberian and Italian liberalised electricity markets," Energy, Elsevier, vol. 263(PD).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pd:s0360544222029292
    DOI: 10.1016/j.energy.2022.126043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222029292
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lazzeroni, Paolo & Moretti, Francesco & Stirano, Federico, 2020. "Economic potential of PV for Italian residential end-users," Energy, Elsevier, vol. 200(C).
    2. Zalzar, Shaghayegh & Bompard, Ettore & Purvins, Arturs & Masera, Marcelo, 2020. "The impacts of an integrated European adjustment market for electricity under high share of renewables," Energy Policy, Elsevier, vol. 136(C).
    3. Stagnaro, Carlo & Amenta, Carlo & Di Croce, Giulia & Lavecchia, Luciano, 2020. "Managing the liberalization of Italy's retail electricity market: A policy proposal☆," Energy Policy, Elsevier, vol. 137(C).
    4. Lamp, Stefan & Samano, Mario, 2022. "Large-scale battery storage, short-term market outcomes, and arbitrage," Energy Economics, Elsevier, vol. 107(C).
    5. Coester, Andreas & Hofkes, Marjan W. & Papyrakis, Elissaios, 2020. "Economic analysis of batteries: Impact on security of electricity supply and renewable energy expansion in Germany," Applied Energy, Elsevier, vol. 275(C).
    6. Clò, Stefano & Cataldi, Alessandra & Zoppoli, Pietro, 2015. "The merit-order effect in the Italian power market: The impact of solar and wind generation on national wholesale electricity prices," Energy Policy, Elsevier, vol. 77(C), pages 79-88.
    7. Buonomano, Annamaria & Calise, Francesco & d'Accadia, Massimo Dentice & Vicidomini, Maria, 2018. "A hybrid renewable system based on wind and solar energy coupled with an electrical storage: Dynamic simulation and economic assessment," Energy, Elsevier, vol. 155(C), pages 174-189.
    8. Antweiler, Werner & Muesgens, Felix, 2021. "On the long-term merit order effect of renewable energies," Energy Economics, Elsevier, vol. 99(C).
    9. Xu, Xiao & Hu, Weihao & Cao, Di & Huang, Qi & Liu, Zhou & Liu, Wen & Chen, Zhe & Blaabjerg, Frede, 2020. "Scheduling of wind-battery hybrid system in the electricity market using distributionally robust optimization," Renewable Energy, Elsevier, vol. 156(C), pages 47-56.
    10. Tianguang Lu & Peter Sherman & Xinyu Chen & Shi Chen & Xi Lu & Michael McElroy, 2020. "India’s potential for integrating solar and on- and offshore wind power into its energy system," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    11. Peng, Donna & Poudineh, Rahmatallah, 2019. "Electricity market design under increasing renewable energy penetration: Misalignments observed in the European Union," Utilities Policy, Elsevier, vol. 61(C).
    12. Silva, Hugo Gonçalves & Abreu, Edgar F.M. & Lopes, Francis M. & Cavaco, Afonso & Canhoto, Paulo & Neto, Jorge & Collares-Pereira, Manuel, 2020. "Solar Irradiation Data Processing using estimator MatriceS (SIMS) validated for Portugal (southern Europe)," Renewable Energy, Elsevier, vol. 147(P1), pages 515-528.
    13. Ishizaki, Takayuki & Koike, Masakazu & Yamaguchi, Nobuyuki & Ueda, Yuzuru & Imura, Jun-ichi, 2020. "Day-ahead energy market as adjustable robust optimization: Spatio-temporal pricing of dispatchable generators, storage batteries, and uncertain renewable resources," Energy Economics, Elsevier, vol. 91(C).
    14. Ferreira, Helder Lopes & Garde, Raquel & Fulli, Gianluca & Kling, Wil & Lopes, Joao Pecas, 2013. "Characterisation of electrical energy storage technologies," Energy, Elsevier, vol. 53(C), pages 288-298.
    15. Costa-Campi, Maria Teresa & Daví-Arderius, Daniel & Trujillo-Baute, Elisa, 2018. "The economic impact of electricity losses," Energy Economics, Elsevier, vol. 75(C), pages 309-322.
    16. Abdelshafy, Alaaeldin M. & Jurasz, Jakub & Hassan, Hamdy & Mohamed, Abdelfatah M., 2020. "Optimized energy management strategy for grid connected double storage (pumped storage-battery) system powered by renewable energy resources," Energy, Elsevier, vol. 192(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitris Al. Katsaprakakis, 2024. "Toward a Renewable and Sustainable Energy Pattern in Non-Interconnected Rural Monasteries: A Case Study for the Xenofontos Monastery, Mount Athos," Sustainability, MDPI, vol. 16(5), pages 1-32, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rinne, Sonja, 2024. "Estimating the merit-order effect using coarsened exact matching: Reconciling theory with the empirical results to improve policy implications," Energy Policy, Elsevier, vol. 185(C).
    2. Glenk, Gunther & Reichelstein, Stefan, 2021. "Intermittent versus dispatchable power sources: An integrated competitive assessment," ZEW Discussion Papers 21-065, ZEW - Leibniz Centre for European Economic Research.
    3. Newbery, D., 2020. "Club goods and a tragedy of the commons: the Clean Energy Package and wind curtailment," Cambridge Working Papers in Economics 20119, Faculty of Economics, University of Cambridge.
    4. Deetjen, Thomas A. & Rhodes, Joshua D. & Webber, Michael E., 2017. "The impacts of wind and solar on grid flexibility requirements in the Electric Reliability Council of Texas," Energy, Elsevier, vol. 123(C), pages 637-654.
    5. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Arsalis, Alexandros & Papanastasiou, Panos & Georghiou, George E., 2022. "A comparative review of lithium-ion battery and regenerative hydrogen fuel cell technologies for integration with photovoltaic applications," Renewable Energy, Elsevier, vol. 191(C), pages 943-960.
    7. Gökgöz, Fazıl & Yücel, Öykü, 2024. "Merit-order of dispatchable and variable renewable energy sources in Turkey's day-ahead electricity market," Utilities Policy, Elsevier, vol. 88(C).
    8. Cieplinski, A. & D'Alessandro, S. & Marghella, F., 2021. "Assessing the renewable energy policy paradox: A scenario analysis for the Italian electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    9. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    10. Shao, Zhen & Zheng, Qingru & Yang, Shanlin & Gao, Fei & Cheng, Manli & Zhang, Qiang & Liu, Chen, 2020. "Modeling and forecasting the electricity clearing price: A novel BELM based pattern classification framework and a comparative analytic study on multi-layer BELM and LSTM," Energy Economics, Elsevier, vol. 86(C).
    11. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    12. Csereklyei, Zsuzsanna & Qu, Songze & Ancev, Tihomir, 2019. "The effect of wind and solar power generation on wholesale electricity prices in Australia," Energy Policy, Elsevier, vol. 131(C), pages 358-369.
    13. Ardizzon, G. & Cavazzini, G. & Pavesi, G., 2014. "A new generation of small hydro and pumped-hydro power plants: Advances and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 746-761.
    14. Daví-Arderius, Daniel & Sanin, María-Eugenia & Trujillo-Baute, Elisa, 2017. "CO2 content of electricity losses," Energy Policy, Elsevier, vol. 104(C), pages 439-445.
    15. Liu, Jin-Long & Wang, Jian-Hua, 2015. "Thermodynamic analysis of a novel tri-generation system based on compressed air energy storage and pneumatic motor," Energy, Elsevier, vol. 91(C), pages 420-429.
    16. Ahmad Alzahrani & Senthil Kumar Ramu & Gunapriya Devarajan & Indragandhi Vairavasundaram & Subramaniyaswamy Vairavasundaram, 2022. "A Review on Hydrogen-Based Hybrid Microgrid System: Topologies for Hydrogen Energy Storage, Integration, and Energy Management with Solar and Wind Energy," Energies, MDPI, vol. 15(21), pages 1-32, October.
    17. Goodarzi, Shadi & Perera, H. Niles & Bunn, Derek, 2019. "The impact of renewable energy forecast errors on imbalance volumes and electricity spot prices," Energy Policy, Elsevier, vol. 134(C).
    18. Brown, David P. & Muehlenbachs, Lucija, 2023. "The Value of Electricity Reliability: Evidence from Battery Adoption," Working Papers 2023-5, University of Alberta, Department of Economics, revised 26 Jul 2024.
    19. Wilkinson, Sam & Maticka, Martin J. & Liu, Yue & John, Michele, 2021. "The duck curve in a drying pond: The impact of rooftop PV on the Western Australian electricity market transition," Utilities Policy, Elsevier, vol. 71(C).
    20. Antweiler, Werner & Muesgens, Felix, 2024. "The new merit order: The viability of energy-only electricity markets with only intermittent renewable energy sources and grid-scale storage," Ruhr Economic Papers 1064, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pd:s0360544222029292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.