IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v91y2020ics0140988320302528.html
   My bibliography  Save this article

Day-ahead energy market as adjustable robust optimization: Spatio-temporal pricing of dispatchable generators, storage batteries, and uncertain renewable resources

Author

Listed:
  • Ishizaki, Takayuki
  • Koike, Masakazu
  • Yamaguchi, Nobuyuki
  • Ueda, Yuzuru
  • Imura, Jun-ichi

Abstract

In this paper, we present modeling and analysis of day-ahead spatio-temporal energy markets in which each competitive player or aggregator aims at making the highest profit by managing a complex mixture of different energy resources, such as conventional generators, storage batteries, and uncertain renewable resources. First, we develop an energy market model in terms of an adjustable robust convex program. This market modeling is novel in the sense that the prosumption cost function of each aggregator, which evaluates the cost or benefit to realize an amount of spatio-temporal energy prosumption, is a multi-variable function resulting from a “parameterized” max-min program, in which the variable of the prosumption cost function is involved as a continuous parameter and the variable of dispatchable resources is involved as an adjustable variable for energy balance. This formulation enables to reasonably evaluate a reward for intertemporal dispatchability enhancement and a penalty for renewable energy uncertainty in a unified way. In addition, it enables to enforce a market regulation in which every aggregator is responsible for absorbing his/her renewable energy uncertainty by managing his/her own dispatchable energy resources. Second, in view of social economy as well as personal economy, we conduct a numerical analysis on the premise of several photovoltaic penetration levels. In this numerical analysis, using a bulk power system model of the north east area in Japan, we demonstrate that renewable generators do not always have priority of energy supply higher than conventional generators due to their uncertainty and limited dispatchability, meaning that the merit order of conventional and renewable generators can reverse. Furthermore, we analyze long-term evolution of competitive energy markets demonstrating that there can be found a social equilibrium of battery penetration levels, at which maximum personal profit with respect to battery system enhancement is attained.

Suggested Citation

  • Ishizaki, Takayuki & Koike, Masakazu & Yamaguchi, Nobuyuki & Ueda, Yuzuru & Imura, Jun-ichi, 2020. "Day-ahead energy market as adjustable robust optimization: Spatio-temporal pricing of dispatchable generators, storage batteries, and uncertain renewable resources," Energy Economics, Elsevier, vol. 91(C).
  • Handle: RePEc:eee:eneeco:v:91:y:2020:i:c:s0140988320302528
    DOI: 10.1016/j.eneco.2020.104912
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988320302528
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2020.104912?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luňáčková, Petra & Průša, Jan & Janda, Karel, 2017. "The merit order effect of Czech photovoltaic plants," Energy Policy, Elsevier, vol. 106(C), pages 138-147.
    2. Iacopo Savelli & Bertrand Corn'elusse & Antonio Giannitrapani & Simone Paoletti & Antonio Vicino, 2017. "A New Approach to Electricity Market Clearing With Uniform Purchase Price and Curtailable Block Orders," Papers 1711.07731, arXiv.org, revised Jun 2018.
    3. Hogan, William W, 1992. "Contract Networks for Electric Power Transmission," Journal of Regulatory Economics, Springer, vol. 4(3), pages 211-242, September.
    4. Roger E. Bohn & Michael C. Caramanis & Fred C. Schweppe, 1984. "Optimal Pricing in Electrical Networks over Space and Time," RAND Journal of Economics, The RAND Corporation, vol. 15(3), pages 360-376, Autumn.
    5. Yanıkoğlu, İhsan & Gorissen, Bram L. & den Hertog, Dick, 2019. "A survey of adjustable robust optimization," European Journal of Operational Research, Elsevier, vol. 277(3), pages 799-813.
    6. Cornélusse, Bertrand & Savelli, Iacopo & Paoletti, Simone & Giannitrapani, Antonio & Vicino, Antonio, 2019. "A community microgrid architecture with an internal local market," Applied Energy, Elsevier, vol. 242(C), pages 547-560.
    7. Petra Lunackova & Jan Prusa & Karel Janda, 2017. "The merit order effect of Czech renewable energy," CAMA Working Papers 2017-17, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    8. Bublitz, Andreas & Keles, Dogan & Zimmermann, Florian & Fraunholz, Christoph & Fichtner, Wolf, 2019. "A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms," Energy Economics, Elsevier, vol. 80(C), pages 1059-1078.
    9. Correa-Florez, Carlos Adrian & Michiorri, Andrea & Kariniotakis, Georges, 2018. "Robust optimization for day-ahead market participation of smart-home aggregators," Applied Energy, Elsevier, vol. 229(C), pages 433-445.
    10. Shum, Kwok L. & Watanabe, Chihiro, 2007. "Photovoltaic deployment strategy in Japan and the USA--an institutional appraisal," Energy Policy, Elsevier, vol. 35(2), pages 1186-1195, February.
    11. Ignacio Aravena & Anthony Papavasiliou, 2017. "Renewable energy integration in zonal markets," LIDAM Reprints CORE 2932, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Savelli, Iacopo & Cornélusse, Bertrand & Giannitrapani, Antonio & Paoletti, Simone & Vicino, Antonio, 2018. "A new approach to electricity market clearing with uniform purchase price and curtailable block orders," Applied Energy, Elsevier, vol. 226(C), pages 618-630.
    13. Bertrand Corn'elusse & Iacopo Savelli & Simone Paoletti & Antonio Giannitrapani & Antonio Vicino, 2018. "A Community Microgrid Architecture with an Internal Local Market," Papers 1810.09803, arXiv.org, revised Feb 2019.
    14. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ju, Liwei & Bai, Xiping & Li, Gen & Gan, Wei & Qi, Xin & Ye, Fan, 2024. "Two-stage robust transaction optimization model and benefit allocation strategy for new energy power stations with shared energy storage considering green certificate and virtual energy storage mode," Applied Energy, Elsevier, vol. 362(C).
    2. Graça Gomes, João & Jiang, Juan & Chong, Cheng Tung & Telhada, João & Zhang, Xu & Sammarchi, Sergio & Wang, Shuyang & Lin, Yu & Li, Jialong, 2023. "Hybrid solar PV-wind-battery system bidding optimisation: A case study for the Iberian and Italian liberalised electricity markets," Energy, Elsevier, vol. 263(PD).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Savelli, Iacopo & Morstyn, Thomas, 2021. "Electricity prices and tariffs to keep everyone happy: A framework for fixed and nodal prices coexistence in distribution grids with optimal tariffs for investment cost recovery," Omega, Elsevier, vol. 103(C).
    2. Xiong, Linyun & Li, Penghan & Wang, Ziqiang & Wang, Jie, 2020. "Multi-agent based multi objective renewable energy management for diversified community power consumers," Applied Energy, Elsevier, vol. 259(C).
    3. Iacopo Savelli & Thomas Morstyn, 2020. "Electricity prices and tariffs to keep everyone happy: a framework for fixed and nodal prices coexistence in distribution grids with optimal tariffs for investment cost recovery," Papers 2001.04283, arXiv.org, revised Jun 2021.
    4. Simshauser, Paul, 2020. "Merchant renewables and the valuation of peaking plant in energy-only markets," Energy Economics, Elsevier, vol. 91(C).
    5. Triolo, Ryan C. & Wolak, Frank A., 2022. "Quantifying the benefits of a nodal market design in the Texas electricity market," Energy Economics, Elsevier, vol. 112(C).
    6. Thomaßen, Georg & Redl, Christian & Bruckner, Thomas, 2022. "Will the energy-only market collapse? On market dynamics in low-carbon electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    7. Karsten Neuhoff, 2002. "Optimal congestion treatment for bilateral electricity trading," Working Papers EP05, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    8. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    9. Martin Weibelzahl & Alexandra Märtz, 2020. "Optimal storage and transmission investments in a bilevel electricity market model," Annals of Operations Research, Springer, vol. 287(2), pages 911-940, April.
    10. Jullien, Céline & Pignon, Virginie & Robin, Stéphane & Staropoli, Carine, 2012. "Coordinating cross-border congestion management through auctions: An experimental approach to European solutions," Energy Economics, Elsevier, vol. 34(1), pages 1-13.
    11. Pär Holmberg & Andy Philpott, 2014. "Supply function equilibria in transportation networks," Cambridge Working Papers in Economics 1421, Faculty of Economics, University of Cambridge.
    12. Brunekreeft, Gert & Neuhoff, Karsten & Newbery, David, 2005. "Electricity transmission: An overview of the current debate," Utilities Policy, Elsevier, vol. 13(2), pages 73-93, June.
    13. Ondřej Filip & Karel Janda & Ladislav Krištoufek, 2018. "Ceny biopaliv a souvisejících komodit: analýza s použitím metod minimální kostry grafu a hierarchických stromů [Prices of Biofuels and Related Commodities: an Analysis Using Methods of Minimum Span," Politická ekonomie, Prague University of Economics and Business, vol. 2018(2), pages 218-239.
    14. Brunekreeft, Gert, 2004. "Market-based investment in electricity transmission networks: controllable flow," Utilities Policy, Elsevier, vol. 12(4), pages 269-281, December.
    15. Gayo-Abeleira, Miguel & Santos, Carlos & Javier Rodríguez Sánchez, Francisco & Martín, Pedro & Antonio Jiménez, José & Santiso, Enrique, 2022. "Aperiodic two-layer energy management system for community microgrids based on blockchain strategy," Applied Energy, Elsevier, vol. 324(C).
    16. Macedo, Daniela Pereira & Marques, António Cardoso & Damette, Olivier, 2022. "The role of electricity flows and renewable electricity production in the behaviour of electricity prices in Spain," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 885-900.
    17. Chen, Yang & Park, Byungkwon & Kou, Xiao & Hu, Mengqi & Dong, Jin & Li, Fangxing & Amasyali, Kadir & Olama, Mohammed, 2020. "A comparison study on trading behavior and profit distribution in local energy transaction games," Applied Energy, Elsevier, vol. 280(C).
    18. Makoto TANAKA, 2005. "Optimal Transmission Capacity under Nodal Pricing and Incentive Regulation for Transco," Discussion papers 05021, Research Institute of Economy, Trade and Industry (RIETI).
    19. Le Hong Lam & Valentin Ilea & Cristian Bovo, 2020. "New Clearing Model to Mitigate the Non-Convexity in European Day-ahead Electricity Market," Energies, MDPI, vol. 13(18), pages 1-28, September.
    20. Savelli, Iacopo & De Paola, Antonio & Li, Furong, 2020. "Ex-ante dynamic network tariffs for transmission cost recovery," Applied Energy, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:91:y:2020:i:c:s0140988320302528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.