IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v211y2020ics0360544220317035.html
   My bibliography  Save this article

Electric energy output model of a piezoelectric transducer for pavement application under vehicle load excitation

Author

Listed:
  • Cao, Yangsen
  • Sha, Aimin
  • Liu, Zhuangzhuang
  • Luan, Bo
  • Li, Jiarong
  • Jiang, Wei

Abstract

Piezoelectric transducers convert mechanical energy in the pavement into electrical energy, providing a new energy supply for road auxiliary facilities. To quantify the relationship between vehicle loads and the electrical energy output of a piezoelectric transducer, the rolling process of a vehicle on the piezoelectric transducer is analyzed. Two output models considering the moving load are established. New piezoelectric transducers are fabricated to verify the models, and differences between the models and the test values are compared in five areas. The loading process was affected by the shape of the piezoelectric transducer and the grounding area of the tire. Although the two models are similar in form, the results show that Model 2 can better represent the electrical energy output because the percentage differences from test results for Model 1 are unstable. Materials with a high strain constant and a low equivalent capacitance can help the transducer achieve higher output voltage and power. Heavy-duty high-speed traffic loads can increase the piezoelectric output of the transducer. The output voltage increases continuously with resistance, whereas the output power has a peak value at a matched resistance. This study can provide a reference for the design of piezoelectric transducers and piezoelectric pavements.

Suggested Citation

  • Cao, Yangsen & Sha, Aimin & Liu, Zhuangzhuang & Luan, Bo & Li, Jiarong & Jiang, Wei, 2020. "Electric energy output model of a piezoelectric transducer for pavement application under vehicle load excitation," Energy, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220317035
    DOI: 10.1016/j.energy.2020.118595
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220317035
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118595?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jung, Inki & Shin, Youn-Hwan & Kim, Sangtae & Choi, Ji-young & Kang, Chong-Yun, 2017. "Flexible piezoelectric polymer-based energy harvesting system for roadway applications," Applied Energy, Elsevier, vol. 197(C), pages 222-229.
    2. Jasim, Abbas & Yesner, Greg & Wang, Hao & Safari, Ahmad & Maher, Ali & Basily, B., 2018. "Laboratory testing and numerical simulation of piezoelectric energy harvester for roadway applications," Applied Energy, Elsevier, vol. 224(C), pages 438-447.
    3. Wang, Chaohui & Wang, Shuai & Gao, Zhiwei & Wang, Xingju, 2019. "Applicability evaluation of embedded piezoelectric energy harvester applied in pavement structures," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Roshani, Hossein & Dessouky, Samer & Montoya, Arturo & Papagiannakis, A.T., 2016. "Energy harvesting from asphalt pavement roadways vehicle-induced stresses: A feasibility study," Applied Energy, Elsevier, vol. 182(C), pages 210-218.
    5. Nasir, Diana S.N.M. & Hughes, Ben Richard & Calautit, John Kaiser, 2015. "A study of the impact of building geometry on the thermal performance of road pavement solar collectors," Energy, Elsevier, vol. 93(P2), pages 2614-2630.
    6. Xu, Huining & Tan, Yiqiu, 2015. "Modeling and operation strategy of pavement snow melting systems utilizing low-temperature heating fluids," Energy, Elsevier, vol. 80(C), pages 666-676.
    7. Pei, Jianzhong & Zhou, Bochao & Lyu, Lei, 2019. "e-Road: The largest energy supply of the future?," Applied Energy, Elsevier, vol. 241(C), pages 174-183.
    8. Guo, Lukai & Lu, Qing, 2017. "Potentials of piezoelectric and thermoelectric technologies for harvesting energy from pavements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 761-773.
    9. Jasim, Abbas & Wang, Hao & Yesner, Greg & Safari, Ahmad & Maher, Ali, 2017. "Optimized design of layered bridge transducer for piezoelectric energy harvesting from roadway," Energy, Elsevier, vol. 141(C), pages 1133-1145.
    10. Jiang, Wei & Yuan, Dongdong & Xu, Shudong & Hu, Huitao & Xiao, Jingjing & Sha, Aimin & Huang, Yue, 2017. "Energy harvesting from asphalt pavement using thermoelectric technology," Applied Energy, Elsevier, vol. 205(C), pages 941-950.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xian, Tongrui & Xu, Yifei & Chen, Chen & Luo, Xiaohui & Zhao, Haixia & Zhang, Yongtao & Shi, Weijie, 2024. "Experimental and theory study on a stacked piezoelectric energy harvester for pressure pulsation in water hydraulic system," Renewable Energy, Elsevier, vol. 225(C).
    2. Jeon, Deok Hwan & Cho, Jae Yong & Jhun, Jeong Pil & Ahn, Jung Hwan & Jeong, Sinwoo & Jeong, Se Yeong & Kumar, Anuruddh & Ryu, Chul Hee & Hwang, Wonseop & Park, Hansun & Chang, Cheulho & Lee, Hyoungjin, 2021. "A lever-type piezoelectric energy harvester with deformation-guiding mechanism for electric vehicle charging station on smart road," Energy, Elsevier, vol. 218(C).
    3. Guo, Lukai & Wang, Hao, 2023. "Multi-physics modeling of piezoelectric energy harvesters from vibrations for improved cantilever designs," Energy, Elsevier, vol. 263(PC).
    4. Wei, Hongqian & Ai, Qiang & Zhao, Wenqiang & Zhang, Youtong, 2022. "Modelling and experimental validation of an EV torque distribution strategy towards active safety and energy efficiency," Energy, Elsevier, vol. 239(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Lukai & Lu, Qing, 2019. "Numerical analysis of a new piezoelectric-based energy harvesting pavement system: Lessons from laboratory-based and field-based simulations," Applied Energy, Elsevier, vol. 235(C), pages 963-977.
    2. Gholikhani, Mohammadreza & Roshani, Hossein & Dessouky, Samer & Papagiannakis, A.T., 2020. "A critical review of roadway energy harvesting technologies," Applied Energy, Elsevier, vol. 261(C).
    3. Yangyang Zhang & Qi Lai & Ji Wang & Chaofeng Lü, 2022. "Piezoelectric Energy Harvesting from Roadways under Open-Traffic Conditions: Analysis and Optimization with Scaling Law Method," Energies, MDPI, vol. 15(9), pages 1-12, May.
    4. Chen, Cheng & Sharafi, Amir & Sun, Jian-Qiao, 2020. "A high density piezoelectric energy harvesting device from highway traffic – Design analysis and laboratory validation," Applied Energy, Elsevier, vol. 269(C).
    5. Gholikhani, Mohammadreza & Nasouri, Reza & Tahami, Seyed Amid & Legette, Sarah & Dessouky, Samer & Montoya, Arturo, 2019. "Harvesting kinetic energy from roadway pavement through an electromagnetic speed bump," Applied Energy, Elsevier, vol. 250(C), pages 503-511.
    6. Pei, Jianzhong & Zhou, Bochao & Lyu, Lei, 2019. "e-Road: The largest energy supply of the future?," Applied Energy, Elsevier, vol. 241(C), pages 174-183.
    7. Jasim, Abbas & Yesner, Greg & Wang, Hao & Safari, Ahmad & Maher, Ali & Basily, B., 2018. "Laboratory testing and numerical simulation of piezoelectric energy harvester for roadway applications," Applied Energy, Elsevier, vol. 224(C), pages 438-447.
    8. Wang, Hao & Jasim, Abbas & Chen, Xiaodan, 2018. "Energy harvesting technologies in roadway and bridge for different applications – A comprehensive review," Applied Energy, Elsevier, vol. 212(C), pages 1083-1094.
    9. Yuan, Huazhi & Wang, Shuai & Wang, Chaohui & Song, Zhi & Li, Yanwei, 2022. "Design of piezoelectric device compatible with pavement considering traffic: Simulation, laboratory and on-site," Applied Energy, Elsevier, vol. 306(PB).
    10. Ebrahim Hamid Hussein Al-Qadami & Zahiraniza Mustaffa & Mohamed E. Al-Atroush, 2022. "Evaluation of the Pavement Geothermal Energy Harvesting Technologies towards Sustainability and Renewable Energy," Energies, MDPI, vol. 15(3), pages 1-26, February.
    11. Wang, J. & Xiao, F. & Zhao, H., 2021. "Thermoelectric, piezoelectric and photovoltaic harvesting technologies for pavement engineering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    12. Niloufar Zabihi & Mohamed Saafi, 2020. "Recent Developments in the Energy Harvesting Systems from Road Infrastructures," Sustainability, MDPI, vol. 12(17), pages 1-27, August.
    13. Tahami, Seyed Amid & Gholikhani, Mohammadreza & Nasouri, Reza & Dessouky, Samer & Papagiannakis, A.T., 2019. "Developing a new thermoelectric approach for energy harvesting from asphalt pavements," Applied Energy, Elsevier, vol. 238(C), pages 786-795.
    14. Yuanlong Cui & Fan Zhang & Yiming Shao & Ssennoga Twaha & Hui Tong, 2022. "Techno-Economic Comprehensive Review of State-of-the-Art Geothermal and Solar Roadway Energy Systems," Sustainability, MDPI, vol. 14(17), pages 1-50, September.
    15. Guo, Lukai & Wang, Hao, 2023. "Multi-physics modeling of piezoelectric energy harvesters from vibrations for improved cantilever designs," Energy, Elsevier, vol. 263(PC).
    16. Lubinda F. Walubita & Abu N. M. Faruk & Jerome Helffrich & Samer Dessouky & Luckson Kamisa & Hossein Roshani & Arturo Montoya, 2022. "The Quest for Renewable Energy—Effects of Different Asphalt Mixes and Laboratory Loading on Piezoelectric Energy Harvesters," Energies, MDPI, vol. 16(1), pages 1-18, December.
    17. Song, Gyeong Ju & Kim, Kyung-Bum & Cho, Jae Yong & Woo, Min Sik & Ahn, Jung Hwan & Eom, Jong Hyuk & Ko, Sung Min & Yang, Chan Ho & Hong, Seong Do & Jeong, Se Yeong & Hwang, Won Seop & Woo, Sang Bum & , 2019. "Performance of a speed bump piezoelectric energy harvester for an automatic cellphone charging system," Applied Energy, Elsevier, vol. 247(C), pages 221-227.
    18. Ghalandari, Taher & Baetens, Robin & Verhaert, Ivan & SNM Nasir, Diana & Van den bergh, Wim & Vuye, Cedric, 2022. "Thermal performance of a controllable pavement solar collector prototype with configuration flexibility," Applied Energy, Elsevier, vol. 313(C).
    19. Chen, Cheng & Xu, Tian-Bing & Yazdani, Atousa & Sun, Jian-Qiao, 2021. "A high density piezoelectric energy harvesting device from highway traffic — System design and road test," Applied Energy, Elsevier, vol. 299(C).
    20. Yuan, Dongdong & Jiang, Wei & Sha, Aimin & Xiao, Jingjing & Shan, Jinhuan & Wang, Di, 2022. "Energy output and pavement performance of road thermoelectric generator system," Renewable Energy, Elsevier, vol. 201(P2), pages 22-33.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220317035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.