IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipas0360544222024653.html
   My bibliography  Save this article

Application of market-based control with thermal energy storage system for demand limiting and real-time pricing control

Author

Listed:
  • Kim, Icksung
  • Kim, Woohyun

Abstract

Imbalances in energy demand and supply related to increased use of renewable energy sources will eventually cause problems with the reliability of the power grid. The reliability of the grid requires ancillary services for power generation, as well as flexible consumption via demand response. In this paper, a multi agent-based distributed control strategy is proposed for commercial buildings to coordinate the flexible building loads with thermal energy storage systems (TESS). The distributed control uses the market mechanisms and price/incentive signals to engage self-interested responsive loads to provide services to the electrical power grid and managing buildings’ electricity consumption. The proposed strategy was validated in a simulation environment to provide two grid service use cases. One is to limit the peak demand of building in which a market clearing strategy with respect to the demand limit is proposed. The other one is to perform price responsive control, in which the peak demand of building responds to the time of use price signals. The peak load reduction is calculated as a percentage of baseline peak load measured in the baseline for the same day. Energy consumption cost saving is defined as the percentage change from the baseline over the entire 5-day simulation. The results show that: (1) the demand limit control can reduce by up to 14% of building energy cost and 13% of peak demand and (2) the price response control can reduce by up to 16% of building energy cost. Overall, the results demonstrate that the distributed control with TESS proposed in this study is effective in reducing electricity use and peak building electric demand.

Suggested Citation

  • Kim, Icksung & Kim, Woohyun, 2023. "Application of market-based control with thermal energy storage system for demand limiting and real-time pricing control," Energy, Elsevier, vol. 263(PA).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222024653
    DOI: 10.1016/j.energy.2022.125579
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222024653
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125579?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiayi, Huang & Chuanwen, Jiang & Rong, Xu, 2008. "A review on distributed energy resources and MicroGrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2472-2483, December.
    2. Li, Kai & Ma, Minda & Xiang, Xiwang & Feng, Wei & Ma, Zhili & Cai, Weiguang & Ma, Xin, 2022. "Carbon reduction in commercial building operations: A provincial retrospection in China," Applied Energy, Elsevier, vol. 306(PB).
    3. Thangavelu, Sundar Raj & Myat, Aung & Khambadkone, Ashwin, 2017. "Energy optimization methodology of multi-chiller plant in commercial buildings," Energy, Elsevier, vol. 123(C), pages 64-76.
    4. Sun, Lingling & Qiu, Jing & Han, Xiao & Yin, Xia & Dong, Zhao Yang, 2020. "Capacity and energy sharing platform with hybrid energy storage system: An example of hospitality industry," Applied Energy, Elsevier, vol. 280(C).
    5. Shen, Jianjian & Cheng, Chuntian & Wu, Xinyu & Cheng, Xiong & Li, Weidong & Lu, Jianyu, 2014. "Optimization of peak loads among multiple provincial power grids under a central dispatching authority," Energy, Elsevier, vol. 74(C), pages 494-505.
    6. Kamal, Rajeev & Moloney, Francesca & Wickramaratne, Chatura & Narasimhan, Arunkumar & Goswami, D.Y., 2019. "Strategic control and cost optimization of thermal energy storage in buildings using EnergyPlus," Applied Energy, Elsevier, vol. 246(C), pages 77-90.
    7. Behboodi, Sahand & Chassin, David P. & Djilali, Ned & Crawford, Curran, 2018. "Transactive control of fast-acting demand response based on thermostatic loads in real-time retail electricity markets," Applied Energy, Elsevier, vol. 210(C), pages 1310-1320.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Min Gyung & Pavlak, Gregory S., 2021. "Assessing the performance of uncertainty-aware transactive controls for building thermal energy storage systems," Applied Energy, Elsevier, vol. 282(PB).
    2. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    3. Chassin, David P. & Behboodi, Sahand & Djilali, Ned, 2018. "Optimal subhourly electricity resource dispatch under multiple price signals with high renewable generation availability," Applied Energy, Elsevier, vol. 213(C), pages 262-271.
    4. Toledo, Olga Moraes & Oliveira Filho, Delly & Diniz, Antônia Sônia Alves Cardoso, 2010. "Distributed photovoltaic generation and energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 506-511, January.
    5. Llaria, Alvaro & Curea, Octavian & Jiménez, Jaime & Camblong, Haritza, 2011. "Survey on microgrids: Unplanned islanding and related inverter control techniques," Renewable Energy, Elsevier, vol. 36(8), pages 2052-2061.
    6. Xiaoqing Wei & Nianping Li & Jinqing Peng & Jianlin Cheng & Jinhua Hu & Meng Wang, 2017. "Modeling and Optimization of a CoolingTower-Assisted Heat Pump System," Energies, MDPI, vol. 10(5), pages 1-18, May.
    7. Chan, Lok Shun, 2022. "Neighbouring shading effect on photovoltaic panel system: Its implication to green building certification scheme," Renewable Energy, Elsevier, vol. 188(C), pages 476-490.
    8. Bouzid, Allal M. & Guerrero, Josep M. & Cheriti, Ahmed & Bouhamida, Mohamed & Sicard, Pierre & Benghanem, Mustapha, 2015. "A survey on control of electric power distributed generation systems for microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 751-766.
    9. Zou, Chenchen & Ma, Minda & Zhou, Nan & Feng, Wei & You, Kairui & Zhang, Shufan, 2023. "Toward carbon free by 2060: A decarbonization roadmap of operational residential buildings in China," Energy, Elsevier, vol. 277(C).
    10. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    11. Nizami, M.S.H. & Hossain, M.J. & Amin, B.M. Ruhul & Fernandez, Edstan, 2020. "A residential energy management system with bi-level optimization-based bidding strategy for day-ahead bi-directional electricity trading," Applied Energy, Elsevier, vol. 261(C).
    12. Fan Li & Jingxi Su & Bo Sun, 2023. "An Optimal Scheduling Method for an Integrated Energy System Based on an Improved k-Means Clustering Algorithm," Energies, MDPI, vol. 16(9), pages 1-22, April.
    13. Mazzola, Simone & Astolfi, Marco & Macchi, Ennio, 2015. "A detailed model for the optimal management of a multigood microgrid," Applied Energy, Elsevier, vol. 154(C), pages 862-873.
    14. Wu, Xiaohua & Hu, Xiaosong & Yin, Xiaofeng & Zhang, Caiping & Qian, Shide, 2017. "Optimal battery sizing of smart home via convex programming," Energy, Elsevier, vol. 140(P1), pages 444-453.
    15. Lu, Renzhi & Bai, Ruichang & Ding, Yuemin & Wei, Min & Jiang, Junhui & Sun, Mingyang & Xiao, Feng & Zhang, Hai-Tao, 2021. "A hybrid deep learning-based online energy management scheme for industrial microgrid," Applied Energy, Elsevier, vol. 304(C).
    16. Hare, James & Shi, Xiaofang & Gupta, Shalabh & Bazzi, Ali, 2016. "Fault diagnostics in smart micro-grids: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1114-1124.
    17. Colak, Ilhami & Kabalci, Ersan & Fulli, Gianluca & Lazarou, Stavros, 2015. "A survey on the contributions of power electronics to smart grid systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 562-579.
    18. Xiong, Chengyan & Meng, Qinglong & Wei, Ying'an & Luo, Huilong & Lei, Yu & Liu, Jiao & Yan, Xiuying, 2023. "A demand response method for an active thermal energy storage air-conditioning system using improved transactive control: On-site experiments," Applied Energy, Elsevier, vol. 339(C).
    19. Xia, Mingchao & Song, Yuguang & Chen, Qifang, 2019. "Hierarchical control of thermostatically controlled loads oriented smart buildings," Applied Energy, Elsevier, vol. 254(C).
    20. Xiang Wang & Le Guo & Jianjian Shen & Meiyan Kong & Xu Han, 2023. "Issues and Strategies for the Dispatching and Trading of the Three Gorges Large Hydropower System," Energies, MDPI, vol. 16(18), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222024653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.